30 research outputs found

    Environmental Health Surveillance for Health Risk Assessment Following Radionuclide Release

    Get PDF
    The currently established linear nontreshold (LNT) risk model is used for radiation protection and is actually not intended for risk assessment. Also dose concepts such as effective dose are constructions used for radiation protection, focusing on the regulatory use in standards for workers but is seldom useful for members of the public. Both the LNT model, as well as use of the concept effective dose, are also not applicable in the low dose area. An alternative method for public health risk assessment and disease surveillance can be the combination of environmental radiation monitoring and health databases. For example, after the Chernobyl accident, airborne measurements of cesium-137 gamma spectrum from the ground, activity data from food samples and high quality national health registries were used for the risk assessment of cancer development

    Minimum Responsiveness and the Political Exclusion of the Poor

    Get PDF
    Sweden received about 5 % of the total release of Cs-137 from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of Cs-137 and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of Cs-137 from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of Cs-137 at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with the lowest incidence of cancer before the accident coincidentally had the lowest fallout of Cs-137. Increasing the geographical resolution of exposure from nine county averages to 612 parish averages resulted in a two to three times higher value of variance in the regression model. There was a secular trend with an increase in age-standardized incidence of cancer in both genders from 1980 to 2009, but significant only in females. This trend was stronger and statistically significant for both genders in the general Swedish population compared to the nine counties. In conclusion, using both high quality cancer registry data and high resolution exposure maps of Cs-137 deposition, it was not possible to distinguish an effect of Cs-137 on cancer incidence after the Chernobyl nuclear power plant accident in Sweden

    Air Quality in Horse Stables

    Get PDF

    Influence of horse stable environment on human airways

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Acute Effects of a Fungal Volatile Compound

    Get PDF
    Objective: 3-Methylfuran (3-MF) is a common fungal volatile product with active biologic properties, and previous studies have indicated a contribution to airway disease. The aim of the present study was to assess the acute health effects of this compound in humans. Design: Acute effects were assessed via chamber exposure to (1 mg/m(3)) 3-MF. Participants and measurements: Twenty-nine volunteers provided symptom reports, ocular electromyograms, measurement of eye tear film break-up time, vital staining of the eye, nasal lavage, acoustic rhinometry, transfer tests, and dynamic spirometry. Results: No subjective ratings were significantly increased during exposure. Blinking frequency and the lavage biomarkers myeloperoxidase and lysozyme were significantly increased, and forced vital capacity was significantly decreased during exposure to 3-MF compared with air control. Conclusions and relevance to clinical practice: Acute effects in the eyes, nose, and airways were detected and might be the result of the biologically active properties of 3-MF. Thus, 3-MF may contribute to building-related illness

    Radiation doses to Swedish nuclear workers and cancer incidence in a nuclear power plant

    Get PDF

    A 24-year follow-up of malignancies in Sweden after the Chernobyl nuclear power accident in 1986

    Get PDF
    A 24-year follow-up of total malignancies in Sweden after the Chernobyl nuclear power plant accident in 1986 shows a small increase in the incidence of malignancies when the average deposition of caesium-137 for each parish was used to classify the exposure

    Cancer incidence in northern Sweden before and after the Chernobyl nuclear power plant accident

    No full text
    Sweden received about 5 % of the total release of Cs-137 from the Chernobyl nuclear power plant accident in 1986. The distribution of the fallout mainly affected northern Sweden, where some parts of the population could have received an estimated annual effective dose of 1-2 mSv per year. It is disputed whether an increased incidence of cancer can be detected in epidemiological studies after the Chernobyl nuclear power plant accident outside the former Union of Soviet Socialist Republics. In the present paper, a possible exposure-response pattern between deposition of Cs-137 and cancer incidence after the Chernobyl nuclear power plant accident was investigated in the nine northernmost counties of Sweden (2.2 million inhabitants in 1986). The activity of Cs-137 from the fallout maps at 1986 was used as a proxy for the received dose of ionizing radiation. Diagnoses of cancer (ICD-7 code 140-209) from 1980 to 2009 were received from the Swedish Cancer Registry (273,222 cases). Age-adjusted incidence rate ratios, stratified by gender, were calculated with Poisson regression in two closed cohorts of the population in the nine counties 1980 and 1986, respectively. The follow-up periods were 1980-1985 and 1986-2009, respectively. The average surface-weighted deposition of Cs-137 at three geographical levels; county (n = 9), municipality (n = 95) and parish level (n = 612) was applied for the two cohorts to study the pre- and the post-Chernobyl periods separately. To analyze time trends, the age-standardized total cancer incidence was calculated for the general Swedish population and the population in the nine counties. Joinpoint regression was used to compare the average annual percent change in the general population and the study population within each gender. No obvious exposure-response pattern was seen in the age-adjusted total cancer incidence rate ratios. A spurious association between fallout and cancer incidence was present, where areas with the lowest incidence of cancer before the accident coincidentally had the lowest fallout of Cs-137. Increasing the geographical resolution of exposure from nine county averages to 612 parish averages resulted in a two to three times higher value of variance in the regression model. There was a secular trend with an increase in age-standardized incidence of cancer in both genders from 1980 to 2009, but significant only in females. This trend was stronger and statistically significant for both genders in the general Swedish population compared to the nine counties. In conclusion, using both high quality cancer registry data and high resolution exposure maps of Cs-137 deposition, it was not possible to distinguish an effect of Cs-137 on cancer incidence after the Chernobyl nuclear power plant accident in Sweden

    Modelling the effective dose to a population from fallout after a nuclear power plant accident-A scenario-based study with mitigating actions

    No full text
    The radiological consequences of a nuclear power plant (NPP) accident, resulting in the release of radionuclides to the environment, will depend largely on the mitigating actions instigated shortly after the accident. It is therefore important to make predictions of the radiation dose to the affected population, from external as well as internal exposure, soon after an accident, despite the fact that data are scarce. The aim of this study was to develop a model for the prediction of the cumulative effective dose up to 84 years of age based on the ground deposition of Cs-137 that is determined soon after fallout. The model accounts for different assumptions regarding external and internal dose contributions, and the model parameters in this study were chosen to reflect various mitigating actions. Furthermore, the relative importance of these parameters was determined by sensitivity analysis. To the best of our knowledge, this model is unique as it allows quantification of both the external and the internal effective dose using only a fallout map of Cs-137 after a nuclear power plant accident. The cumulative effective dose over a period of 50 years following the accident per unit Cs-137 deposited was found to range from 0.14 mSv/kBq m(-2) to 1.5 mSv/kBq m(-2), depending on the mitigating actions undertaken. According to the sensitivity analysis, the most important parameters governing the cumulative effective dose to various adult populations during 50 years after the fallout appear to be: the correlation factor between the local areal deposition of Cs-137 and the maximum initial ambient dose rate; the maximum transfer from regional average fallout on the ground to body burden; the local areal deposition of Cs-137; and the regional average Cs-137 deposition. Therefore, it is important that mapping of local Cs-137 deposition is carried out immediately after fallout from a nuclear power plant accident, followed by calculations of radiation doses for different scenarios using well-known parameters, in order to identify the most efficient mitigation strategies. Given this Cs-137 mapping, we believe our model is a valuable tool for long-term radiological assessment in the early phase after NPP accidents
    corecore