301 research outputs found

    The SFA Economist Vol. 2 No. 2

    Get PDF
    https://scholarworks.sfasu.edu/economist/1003/thumbnail.jp

    Legionella Eukaryotic-Like Type IV Substrates Interfere with Organelle Trafficking

    Get PDF
    Legionella pneumophila, the causative agent of Legionnaires' disease, evades phago-lysosome fusion in mammalian and protozoan hosts to create a suitable niche for intracellular replication. To modulate vesicle trafficking pathways, L. pneumophila translocates effector proteins into eukaryotic cells through a Type IVB macro-molecular transport system called the Icm-Dot system. In this study, we employed a fluorescence-based translocation assay to show that 33 previously identified Legionella eukaryotic-like genes (leg) encode substrates of the Icm-Dot secretion system. To assess which of these proteins may contribute to the disruption of vesicle trafficking, we expressed each gene in yeast and looked for phenotypes related to vacuolar protein sorting. We found that LegC3-GFP and LegC7/YlfA-GFP caused the mis-secretion of CPY-Invertase, a fusion protein normally restricted to the yeast vacuole. We also found that LegC7/YlfA-GFP and its paralog LegC2/YlfB-GFP formed large structures around the yeast vacuole while LegC3-GFP localized to the plasma membrane and a fragmented vacuole. In mammalian cells, LegC2/YlfB-GFP and LegC7/YlfA-GFP were found within large structures that co-localized with anti-KDEL antibodies but excluded the lysosomal marker LAMP-1, similar to what is observed in Legionella-containing vacuoles. LegC3-GFP, in contrast, was observed as smaller structures which had no obvious co-localization with KDEL or LAMP-1. Finally, LegC3-GFP caused the accumulation of many endosome-like structures containing undigested material when expressed in the protozoan host Dictyostelium discoideum. Our results demonstrate that multiple Leg proteins are Icm/Dot-dependent substrates and that LegC3, LegC7/YlfA, and LegC2/YlfB may contribute to the intracellular trafficking of L. pneumophila by interfering with highly conserved pathways that modulate vesicle maturation

    Low power radiometric partial discharge sensor using composite transistor-reset integrator

    Get PDF
    The measurement of partial discharge provides a means of monitoring insulation health in high-voltage equipment. Traditional partial discharge measurements require separate installation for each item of plant to physically connect sensors with specific items. Wireless measurement methods provide an attractive and scalable alternative. Existing wireless monitoring technologies which use time-difference-of-arrival of a partial discharge signal at multiple, spatially separated, sensors place high demands on power consumption and cost due to a requirement for rapid sampling. A recently proposed partial discharge monitoring system using a wireless sensor network and measuring received signal strength only, has potential cost and scalability advantages. An incoherent wireless sensor incorporating a transistor-reset integrator has been developed that reduces the measurement bandwidth of the PD events and alleviates the need for high-speed sampling. It is based on composite amplifier techniques to reduce the power requirements by a factor of approximately four without compromising precision. The accuracy of the proposed sensor is compared to that obtained using a high-speed digital sampling oscilloscope. Received energies were measured over a 10 m distance in 1 m increments and produced an error within 1 dB beyond 4 m and 3.2 dB at shorter distances, resulting in a measurement accuracy within 1 m

    Early Identification and Prevention of the Spread of Ebola - United States

    Get PDF
    In response to the 2014-2016 Ebola virus disease (Ebola) epidemic in West Africa, CDC prepared for the potential introduction of Ebola into the United States. The immediate goals were to rapidly identify and isolate any cases of Ebola, prevent transmission, and promote timely treatment of affected patients. CDC\u27s technical expertise and the collaboration of multiple partners in state, local, and municipal public health departments; health care facilities; emergency medical services; and U.S. government agencies were essential to the domestic preparedness and response to the Ebola epidemic and relied on longstanding partnerships. CDC established a comprehensive response that included two new strategies: 1) active monitoring of travelers arriving from countries affected by Ebola and other persons at risk for Ebola and 2) a tiered system of hospital facility preparedness that enabled prioritization of training. CDC rapidly deployed a diagnostic assay for Ebola virus (EBOV) to public health laboratories. Guidance was developed to assist in evaluation of patients possibly infected with EBOV, for appropriate infection control, to support emergency responders, and for handling of infectious waste. CDC rapid response teams were formed to provide assistance within 24 hours to a health care facility managing a patient with Ebola. As a result of the collaborations to rapidly identify, isolate, and manage Ebola patients and the extensive preparations to prevent spread of EBOV, the United States is now better prepared to address the next global infectious disease threat.The activities summarized in this report would not have been possible without collaboration with many U.S. and international partners (http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/partners.html)

    Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is a highly successful protozoan parasite in the phylum Apicomplexa, which contains numerous animal and human pathogens. T.gondii is amenable to cellular, biochemical, molecular and genetic studies, making it a model for the biology of this important group of parasites. To facilitate forward genetic analysis, we have developed a high-resolution genetic linkage map for T.gondii. The genetic map was used to assemble the scaffolds from a 10X shotgun whole genome sequence, thus defining 14 chromosomes with markers spaced at ∼300 kb intervals across the genome. Fourteen chromosomes were identified comprising a total genetic size of ∼592 cM and an average map unit of ∼104 kb/cM. Analysis of the genetic parameters in T.gondii revealed a high frequency of closely adjacent, apparent double crossover events that may represent gene conversions. In addition, we detected large regions of genetic homogeneity among the archetypal clonal lineages, reflecting the relatively few genetic outbreeding events that have occurred since their recent origin. Despite these unusual features, linkage analysis proved to be effective in mapping the loci determining several drug resistances. The resulting genome map provides a framework for analysis of complex traits such as virulence and transmission, and for comparative population genetic studies
    corecore