816 research outputs found

    Coming home upset: Gender, marital satisfaction and the daily spillover of workday experience into couple interactions

    Get PDF
    This study explored how daily changes in workday pace and end-of-the-workday mood were related to nightly variations in withdrawn and angry marital behavior. For 3 days, 82 husbands and wives from 42 couples completed questionnaires at the end of the workday and at bedtime. More negatively arousing workdays were linked with angrier marital behavior for women and less angry and more withdrawn behavior for men. Daily changes in workday pace predicted fluctuations in women\u27s, but not men\u27s, marital behavior. Several of these workday-marital behavior connections varied by level of marital satisfaction. In contrast to the gender differences in responses to workday stress, no differences were found in typical marital behaviors. These findings suggest that gender differences are enhanced under stress

    Coming home upset: Gender, marital satisfaction and the daily spillover of workday experience into couple interactions

    Get PDF
    This study explored how daily changes in workday pace and end-of-the-workday mood were related to nightly variations in withdrawn and angry marital behavior. For 3 days, 82 husbands and wives from 42 couples completed questionnaires at the end of the workday and at bedtime. More negatively arousing workdays were linked with angrier marital behavior for women and less angry and more withdrawn behavior for men. Daily changes in workday pace predicted fluctuations in women\u27s, but not men\u27s, marital behavior. Several of these workday-marital behavior connections varied by level of marital satisfaction. In contrast to the gender differences in responses to workday stress, no differences were found in typical marital behaviors. These findings suggest that gender differences are enhanced under stress

    Challenges in Scaling Up Greenhouse Gas Fluxes: Experience From the UK Greenhouse Gas Emissions and Feedbacks Program

    Get PDF
    The role of greenhouse gases (GHGs) in global climate change is now well recognized and there is a clear need to measure emissions and verify the efficacy of mitigation measures. To this end, reliable estimates are needed of the GHG balance at the national scale and over long time periods, but these estimates are difficult to make accurately. Because measurement techniques are generally restricted to relatively small spatial and temporal scales, there is a fundamental problem in translating these into long-term estimates on a regional scale. The key challenge lies in spatial and temporal upscaling of short-term, point observations to estimate large-scale annual totals, and quantify the uncertainty associated with this upscaling. Here, we review some approaches to this problem and synthesize the work in the recent UK Greenhouse Gas Emissions and Feedbacks Program, which was designed to identify and address these challenges. Approaches to the scaling problem included: instrumentation developments which mean that near-continuous data sets can be produced with larger spatial coverage; geostatistical methods which address the problem of extrapolating to larger domains, using spatial information in the data; more rigorous statistical methods which characterize the uncertainty in extrapolating to longer time scales; analytical approaches to estimating model aggregation error; enhanced estimates of C flux measurement error; and novel uses of remote sensing data to calibrate process models for generating probabilistic regional C flux estimates

    Exoplanet phase curves: observations and theory

    Full text link
    Phase curves are the best technique to probe the three dimensional structure of exoplanets' atmospheres. In this chapter we first review current exoplanets phase curve observations and the particular challenges they face. We then describe the different physical mechanisms shaping the atmospheric phase curves of highly irradiated tidally locked exoplanets. Finally, we discuss the potential for future missions to further advance our understanding of these new worlds.Comment: Fig.5 has been updated. Table 1 and corresponding figures have been updated with new values for WASP-103b and WASP-18b. Contains a table sumarizing phase curve observation

    Efficient Culturing and Genetic Manipulation of Human Pluripotent Stem Cells

    Get PDF
    Human pluripotent stem cells (hPSC) hold great promise as models for understanding disease and as a source of cells for transplantation therapies. However, the lack of simple, robust and efficient culture methods remains a significant obstacle for realizing the utility of hPSCs. Here we describe a platform for the culture of hPSCs that 1) allows for dissociation and replating of single cells, 2) significantly increases viability and replating efficiency, 3) improves freeze/thaw viability 4) improves cloning efficiency and 5) colony size variation. When combined with standard methodologies for genetic manipulation, we found that the enhanced culture platform allowed for lentiviral transduction rates of up to 95% and electroporation efficiencies of up to 25%, with a significant increase in the total number of antibiotic-selected colonies for screening for homologous recombination. We further demonstrated the utility of the enhanced culture platform by successfully targeting the ISL1 locus. We conclude that many of the difficulties associated with culturing and genetic manipulation of hPSCs can be addressed with optimized culture conditions, and we suggest that the use of the enhanced culture platform could greatly improve the ease of handling and general utility of hPSCs

    Evaluating Climate Variability of the Canonical Hot-Jupiters HD 189733b and HD 209458b through Multi-epoch Eclipse Observations

    Get PDF
    Here we present the analysis of multi-epoch secondary eclipse observations of HD 189733b and HD 209458b as a probe of temporal variability in the planetary climate using both Spitzer channels 1 and 2 (3.6 and 4.5 μm). We expect hot-Jupiter atmospheres to be dynamic environments exhibiting time varying weather. However, it is uncertain to what extent temporal variability will be observable when considering disk integrated observations. We do not detect statistically significant variability and are able to place useful upper limits on the infrared variability amplitudes in these atmospheres. There are very few planets with multi-epoch observations at the required precision to probe variability in dayside emission. The observations considered in this study span several years, providing insight into temporal variability at multiple timescales. In the case of HD 189733b, the best-fit eclipse depths for the channel 2 observations exhibit a scatter of 102 ppm about a median depth of 1827 ppm and in channel 1 exhibit a scatter of 88 ppm about a median depth of 1481 ppm. For HD 209458b, the best-fit eclipse depths for the channel 2 observations exhibit a scatter of 22 ppm about a median depth of 1406 ppm, and in channel 1 exhibit a scatter of 131 ppm about a median depth of 1092 ppm. The precision and scatter in these observations allow us to constrain variability to less than (5.6% and 6.0%) and (12% and 1.6%) for channels (1, 2) of HD 189733b and HD 209458b, respectively

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio
    • …
    corecore