4,944 research outputs found

    Comparative Fault in Maryland: the Time Has Come

    Get PDF

    Black Rings, Boosted Strings and Gregory-Laflamme

    Full text link
    We investigate the Gregory-Laflamme instability for black strings carrying KK-momentum along the internal direction. We demonstrate a simple kinematical relation between the thresholds of the classical instability for the boosted and static black strings. We also find that Sorkin's critical dimension depends on the internal velocity and in fact disappears for sufficiently large boosts. Our analysis implies the existence of an analogous instability for the five-dimensional black ring of Emparan and Reall. We also use our results for boosted black strings to construct a simple model of the black ring and argue that such rings exist in any number of space-time dimensions.Comment: 26 pages, 6 figure

    Algebraic Solutions of the Lam\'e Equation, Revisited

    Get PDF
    A minor error in the necessary conditions for the algebraic form of the Lam\'e equation to have a finite projective monodromy group, and hence for it to have only algebraic solutions, is pointed out. [See F. Baldassarri, "On algebraic solutions of Lam\'e's differential equation", J. Differential Equations 41 (1981), 44-58.] It is shown that if the group is the octahedral group S_4, then the degree parameter of the equation may differ by +1/6 or -1/6 from an integer; this possibility was missed. The omission affects a recent result on the monodromy of the Weierstrass form of the Lam\'e equation. [See R. C. Churchill, "Two-generator subgroups of SL(2,C) and the hypergeometric, Riemann, and Lam\'e equations", J. Symbolic Computation 28 (1999), 521-545.] The Weierstrass form, which is a differential equation on an elliptic curve, may have, after all, an octahedral projective monodromy group.Comment: 20 pages, elsart document class, no figure

    Sub-Alfvenic Non-Ideal MHD Turbulence Simulations with Ambipolar Diffusion: I. Turbulence Statistics

    Full text link
    Most numerical investigations on the role of magnetic fields in turbulent molecular clouds (MCs) are based on ideal magneto-hydrodynamics (MHD). However, MCs are weakly ionized, so that the time scale required for the magnetic field to diffuse through the neutral component of the plasma by ambipolar diffusion (AD) can be comparable to the dynamical time scale. We have performed a series of 256^3 and 512^3 simulations on supersonic but sub-Alfvenic turbulent systems with AD using the Heavy-Ion Approximation developed in Li, McKee, & Klein (2006). Our calculations are based on the assumption that the number of ions is conserved, but we show that these results approximately apply to the case of time-dependent ionization in molecular clouds as well. Convergence studies allow us to determine the optimal value of the ionization mass fraction when using the heavy-ion approximation for low Mach number, sub-Alfvenic turbulent systems. We find that ambipolar diffusion steepens the velocity and magnetic power spectra compared to the ideal MHD case. Changes in the density PDF, total magnetic energy, and ionization fraction are determined as a function of the AD Reynolds number. The power spectra for the neutral gas properties of a strongly magnetized medium with a low AD Reynolds number are similar to those for a weakly magnetized medium; in particular, the power spectrum of the neutral velocity is close to that for Burgers turbulence.Comment: 37 pages, 11 figures, 4 table

    Sex and Gender in Medical Education, and proceedings from the 2015 Sex and Gender Education Summit

    Get PDF
    The Sex and Gender Medical Education Summit: a roadmap for curricular innovation was a collaborative initiative of the American Medical Women\u27s Association, Laura W. Bush Institute for Women’s Health, Mayo Clinic, and Society for Women\u27s Health Research (www.sgbmeducationsummit.com). It was held on October 18–19, 2015 to provide a unique venue for collaboration among nationally and internationally renowned experts in developing a roadmap for the incorporation of sex and gender based concepts into medical education curricula. The Summit engaged 148 in-person attendees for the 1 1/2-day program. Pre- and post-Summit surveys assessed the impact of the Summit, and workshop discussions provided a framework for informal consensus building. Sixty-one percent of attendees indicated that the Summit had increased their awareness of the importance of sex and gender specific medicine. Other comments indicate that the Summit had a significant impact for motivating a call to action among attendees and provided resources to initiate change in curricula within their home institutions. These educational efforts will help to ensure a sex and gender basis for delivery of health care in the future

    LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival.

    Get PDF
    Epithelial dysfunction and crypt destruction are defining features of inflammatory bowel disease (IBD). However, current IBD therapies targeting epithelial dysfunction are lacking. The nuclear receptor LRH-1 (NR5A2) is expressed in intestinal epithelium and thought to contribute to epithelial renewal. Here we show that LRH-1 maintains intestinal epithelial health and protects against inflammatory damage. Knocking out LRH-1 in murine intestinal organoids reduces Notch signaling, increases crypt cell death, distorts the cellular composition of the epithelium, and weakens the epithelial barrier. Human LRH-1 (hLRH-1) rescues epithelial integrity and when overexpressed, mitigates inflammatory damage in murine and human intestinal organoids, including those derived from IBD patients. Finally, hLRH-1 greatly reduces disease severity in T-cell-mediated murine colitis. Together with the failure of a ligand-incompetent hLRH-1 mutant to protect against TNFα-damage, these findings provide compelling evidence that hLRH-1 mediates epithelial homeostasis and is an attractive target for intestinal disease

    Classical Stabilization of Homogeneous Extra Dimensions

    Get PDF
    If spacetime possesses extra dimensions of size and curvature radii much larger than the Planck or string scales, the dynamics of these extra dimensions should be governed by classical general relativity. We argue that in general relativity, it is highly nontrivial to obtain solutions where the extra dimensions are static and are dynamically stable to small perturbations. We also illustrate that intuition on equilibrium and stability built up from non-gravitational physics can be highly misleading. For all static, homogeneous solutions satisfying the null energy condition, we show that the Ricci curvature of space must be nonnegative in all directions. Much of our analysis focuses on a class of spacetime models where space consists of a product of homogeneous and isotropic geometries. A dimensional reduction of these models is performed, and their stability to perturbations that preserve the spatial symmetries is analyzed. We conclude that the only physically realistic examples of classically stabilized large extra dimensions are those in which the extra-dimensional manifold is positively curved.Comment: 25 pages; minor changes, improved reference
    • …
    corecore