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Abstract

A minor error in the necessary conditions for the algebraic form of the Lamé equation to

have a finite projective monodromy group, and hence for it to have only algebraic solutions, is

pointed out (see Baldassarri, J. Differential Equations 41 (1) (1981) 44). It is shown that if the

group is the octahedral group S4; then the degree parameter of the equation may differ by

71=6 from an integer; this possibility was missed. The omission affects a recent result on the

monodromy of the Weierstrass form of the Lamé equation (see Churchill, J. Symbolic Comput.

28 (4–5) (1999) 521). The Weierstrass form, which is a differential equation on an elliptic

curve, may have, after all, an octahedral projective monodromy group.
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1. Introduction

The Lamé equation is a second-order Fuchsian differential equation. It may be
written Lc;Bu ¼ 0; where Lc;B is the Lamé operator with complex parameters c and

B: The first, the so-called degree parameter, is often denoted n; but the notation c is

ARTICLE IN PRESS

�Fax: +520-621-6892.

E-mail address: rsm@math.arizona.edu.

URL: http://www.math.arizona.edu/~rsm.
1Partially supported by NSF grants PHY-9800979 and PHY-0099484.

0022-0396/$ - see front matter r 2003 Elsevier Inc. All rights reserved.

doi:10.1016/j.jde.2003.06.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82246876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


used here, to hint at connections with Lie group representation theory. B is an
accessory parameter, which in many applications plays the role of an eigenvalue.
The Lamé equation arose in a classical setting: the solution of Laplace’s equation

in ellipsoidal coordinates by separation of variables. In that context, its solutions
include the ellipsoidal harmonics. In classical treatments, c is accordingly an integer,
or perhaps a half-odd-integer [17, Chapter XXIII]. The latter case arises in a more
complicated separation of variables problem (see [7, Section 15.1.3; 14, Chapter IX,
Ex. 4]). In modern applications, c may vary continuously. For example, the
Lamé equation with cA½0; 2� has been used to compute the Hubble distance–
redshift relation in inhomogeneous, spatially flat cosmologies [9]. In that application,
fcðcþ 1Þ=6gA½0; 1� is the fraction of inhomogeneous matter in the universe that is
‘dark’, i.e., excluded from observation.
Actually, several distinct equations are referred to in the literature as the

Lamé equation. We initially consider the algebraic form, rather than the Weierstrass
or the Jacobi form. The algebraic form is defined on the complex projective line

P1ðCÞ ¼ C,fNg; with

Lc;B ¼def D2 þ 1

2

X3
i¼1

1

x 
 ei

D 
 cðcþ 1Þx þ B

4
Q3

i¼1ðx 
 eiÞ
; ð1:1Þ

where D ¼def d=dx: Here c;B; e1; e2; e3AC; the ei are distinct, and by convention, e1 þ
e2 þ e3 ¼ 0: The equation Lc;Bu ¼ 0 has four regular singular points, three of which

ðe1; e2; e3Þ have characteristic exponents 0; 1=2; and one of which (N) has exponents

c=2; ðcþ 1Þ=2: So the algebraic-form Lamé equation is a special case of the Heun

equation, which is the general second-order Fuchsian equation on P1ðCÞ with four
singular points.

Via the map ðx; yÞ/x; the line P1ðCÞ is doubly covered by the elliptic curve

y2 ¼ 4x3 
 g2x 
 g3; where the invariants g2; g3AC; at least one of which is nonzero,

are defined by 4x3 
 g2x 
 g3 � 4
Q3

i¼1ðx 
 eiÞ: This curve will be denoted Eg2;g3 : Lc;B

can be pulled back to a differential operator Lc;B;g2;g3 that acts on Eg2;g3 : The pullback

has only one singular point, namely ðx; yÞ ¼ ðN;NÞ; which from a geometric point
of view is why the Lamé case of the Heun equation is important. The pulled-back
equation Lc;B;g2;g3u ¼ 0 on Eg2;g3 is the Weierstrass form, which is discussed in

Section 5. Indirect references to the elliptic curve interpretation occur elsewhere,
since when studying Lc;B; we classify various situations by supplying the

corresponding value of J; Klein’s modular function (also known as Klein’s absolute

invariant). Recall that J ¼def g32=DAC; where D ¼def g32 
 27g23a0 is the modular

discriminant. Iff two elliptic curves specified by g2; g3 have the same value of J;
they are birationally equivalent, e.g., homeomorphic as complex manifolds [6,
Section 5.3].
The determination of all quadruples c;B; g2; g3 for which Lc;B has only algebraic

functions in its kernel is an unsolved problem. The nonclassical case 2ceZ of this
problem is perhaps the most tractable. Singer [16] and Morales-Ruiz and Simó
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[12, Lemma 1] mention an unpublished result of Dwork that for any fixed c for
which 2ceZ; if e1 is fixed, then there are only a finite number of pairs e3;B for which
all solutions of Lc;Bu ¼ 0 are algebraic. In essence, for each ceð1=2ÞZ there are only

a finite number of ‘algebraic’ pairs J;B; though for this statement to make sense, B

would need to be redefined in a scale-invariant way, constant on each elliptic curve
isomorphism class.
The difficulty of finding all c;B; g2; g3 for which the Lamé equation Lc;Bu ¼ 0 has

only algebraic solutions contrasts with the classical solution of the corresponding
problem for the hypergeometric equation Ll;m;nv ¼ 0; the canonical second-order

Fuchsian equation on P1ðCÞ with three singular points. Here

Ll;m;n ¼
def d2

dz2
þ 1
 l2

4z2
þ 1
 m2

4ðz 
 1Þ2
þ l2 þ m2 
 1
 n2

4zðz 
 1Þ ð1:2Þ

is the (normal-form) hypergeometric operator with exponent differences l; m; nAC;
and the singular points on P1ðCÞ (coordinatized by z) are z ¼ 0; 1;N: It is a classical
result of Schwarz that if l; m; neZ; then Ll;m;nv ¼ 0 will have only algebraic solutions

iff a suitably normalized version of l; m; n (regarded as an unordered triple) appears
on a certain list. This is the famous ‘Schwarz list’, which has 15 entries, numbered I–
XV (see [7, Section 2.7.2; 13; 14, Section 30]). The case when one of l; m; n is an
integer is degenerate, and can be handled by other means (it has its own list). To each
list entry there corresponds a finite group, to which the projective monodromy group
GðLl;m;nÞ; which will be a finite subgroup of the Möbius group PGLð2;CÞ; is

necessarily isomorphic. The possible groups are cyclic (Cn; nX1), dihedral
ðDn; nX2Þ; tetrahedral ðA4Þ; octahedral ðS4Þ; and icosahedral ðA5Þ:
Klein’s theory of pullbacks of Fuchsian operators grew out of Schwarz’s

classification theory. Associated to any second-order Fuchsian operator F on an
algebraic curve over C is a projective monodromy group GðFÞpPGLð2;CÞ: Klein
showed that GðFÞ will be finite, which is almost enough to ensure that Fu ¼ 0 has

only algebraic solutions, iff F is a (weak) pullback from P1ðCÞ of some Ll;m;n; where

l; m; n belongs to a small sublist, called the ‘basic Schwarz list’. (Other list entries can
be omitted since they are redundant: they themselves correspond to pullbacks.)
Necessarily GðFÞpGðLl;m;nÞ; and in fact, there is at least one l; m; n on the basic

Schwarz list, with corresponding pullback, such that GðFÞ ¼ GðLl;m;nÞ: If the

pullback is known explicitly, GðFÞ may readily be computed, and the solutions of
Fu ¼ 0 may be computed too. All solutions will be algebraic, provided the
Wronskian of F is algebraic. The proofs of Klein were modernized by Baldassarri
and Dwork in [1,3].
In a remarkable paper, Baldassarri [2] applied Klein’s theory to the Lamé

equation. By determining necessary conditions for the existence of a pullback of Lc;B

from each possible Ll;m;n; Baldassarri derived a necessary condition for Lc;Bu ¼ 0 to

have only algebraic solutions, and also necessary conditions for GðLc;BÞ to be each

possible finite subgroup of the Möbius group. It is a classical result that GðLc;BÞ is
never cyclic, and can be dihedral only if 2cAZ: Moreover, in the nonclassical case
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2ceZ; it cannot be dihedral. Baldassarri showed that if 2ceZ; all solutions of
Lc;Bu ¼ 0 can be algebraic only if one of c71=10; c71=6; c71=4; c73=10 is an

integer. Moreover, GðLc;BÞ cannot be tetrahedral, so if it is finite, it must be

octahedral or icosahedral.
Unfortunately, [2] errs in its treatment of the octahedral case. In Theorem 3.1, we

restate the conditions of [2] with the following correction: For GðLc;BÞ to be

octahedral, it is necessary that one of the four numbers c71=4; c71=6 be an integer,
but not that one of c71=4 be an integer. We discovered the need for this correction
while examining the implications for Lamé monodromy of [11], which in effect
classifies all strong pullbacks of the hypergeometric to the Heun equation. Pulling
back ‘algebraic’ Ll;m;n via the quadratic and cubic cyclic maps treated in [11] yields

useful examples of Lamé operators with only algebraic functions in their kernels,
including a counterexample to the necessary condition of [2]. The counterexample
appears in Proposition 3.4, and explicit formulae for the solutions of a number of
interesting Lamé equations with projectively finite monodromy are given in Section 4.
The corrected necessary condition for GðLc;BÞ to be octahedral overlaps with the

necessary condition that it be icosahedral, which is that one of the six numbers
c71=10; c71=6; c73=10 be an integer. For example, c ¼ 1=6 is both an
octahedral and an icosahedral alternative. It follows from Propositions 3.4 and 3.5
that there are Lamé operators with c ¼ 1=6 of both the octahedral and icosahedral
types. This implies that in the nonclassical 2ceZ case, finite projective monodromy
is not determined uniquely by c:
Churchill [4] studied the monodromy of the Weierstrass-form Lamé equation

Lc;B;g2;g3u ¼ 0 on the elliptic curve Eg2;g3 ; and employed the results of [2] to derive

similar results on the projective monodromy group GðLc;B;g2;g3Þ: In particular, he

deduced that it cannot be octahedral. Unfortunately, this deduction is invalidated by
the error in [2] and the consequent nonuniqueness. In Section 5, we provide details,
including Theorem 5.1, a corrected theorem on GðLc;B;g2;g3Þ and its relation to

GðLc;BÞ: We also give an example of an equation Lc;B;g2;g3u ¼ 0 with octahedral

projective monodromy.

2. Preliminaries

The following definitions and results are fairly standard [1,3], but are included to
make this paper self-contained. Suppose C is a nonsingular algebraic curve over C
with function field K=C; and that D is a nontrivial derivation of K=C: (For example,

C ¼ P1ðCÞ; with K ¼ CðxÞ; the field of rational functions, and D the usual
derivation d=dx:) Consider the monic second-order operator

L ¼ D2 þA � D þB; ð2:1Þ

where A;BAK : Let fP1;y;Prg be its set of singular points, which comprises the
poles of A and B; and possibly the point at infinity; and let P be an ordinary point.
A GLð2;CÞ monodromy representation of the fundamental group of the punctured
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curve, p1ðC\fP1;y;Prg;PÞ; is obtained by analytically continuing any two linearly
independent function elements u1; u2 around closed paths that issue from P: Its
image in GLð2;CÞ is the monodromy group of L (its isomorphism class is
independent of the choice of u1; u2 and P). The image of the monodromy group in
PGLð2;CÞ; obtained by quotienting out its intersection with C\f0g; is the projective
monodromy group GðLÞ; the group of monodromies of the ratio u2=u1:
Iff GðLÞ is finite, any ratio of independent solutions of Lu ¼ 0 will be algebraic

over K ; with Galois group GðLÞ: Let t be such a ratio. By calculation, ifA ¼ 0; then

u1 ¼def 1=
ffiffiffiffiffiffi
Dt

p
and u2 ¼def t=

ffiffiffiffiffiffi
Dt

p
will satisfy Lui ¼ 0: Moreover, these u1; u2 are

independent. So if A ¼ 0; all solutions of Lu ¼ 0 are algebraic over K iff GðLÞ is
finite. A ¼ 0 can be weakened to the condition that the Wronskian w ¼ wðLÞ;
defined locally on C by Dw þA � w ¼ 0; be algebraic over K: This is because

L̂ ¼ 1=
ffiffiffiffi
w

p
3L3

ffiffiffiffi
w

p

¼D2 
 DA=2
A2=4þB ð2:2Þ

equals D2 þ #A � D þ #B with #A ¼ 0; i.e., is of ‘normal form’. The groups GðLÞ and
GðL̂Þ are isomorphic, and Lu ¼ 0 iff L̂ðu=

ffiffiffiffi
w

p
Þ ¼ 0: That is, the solution space of

Lu ¼ 0 is spanned by
ffiffiffiffi
w

p
=

ffiffiffiffiffiffi
D#t

p
and

ffiffiffiffi
w

p
#t=

ffiffiffiffiffiffi
D#t

p
; where #t is any ratio of solutions of

L̂û ¼ 0; #t is algebraic iff GðLÞ is finite. So if wðLÞ is algebraic, Lu ¼ 0 has a full set of
algebraic solutions iff GðLÞ is finite.
Let x : C-C0 be a rational map of algebraic curves, where C0 is another

nonsingular algebraic curve over C; with its own function field K 0=C and nontrivial

derivation D0: If L is as in (2.1), and L0 ¼ ðD0Þ2 þA0 � D0 þB0; with A0;B0AK 0; is a
similar monic second-order operator on C0; then L is said to be a strong pullback of
L0 if there are independent solutions u1; u2 and u0

1; u0
2 of L;L0; respectively, such that

ui ¼ u0
i3x: For example, if x is the coordinate on C and C0 ¼ P1ðCÞ is coordinatized

by z; so that z ¼ xðxÞ is a rational function on C; and L0 ¼ D2
z þB0; then the strong

pullback of L0 is

ðdx=dxÞ2 d2

dx2
þB0ðxÞ

� �
¼ d2

dx2

 d2x=dx2

dx=dx

d

dx
þ ðdx=dxÞ2B0ðxðxÞÞ; ð2:3Þ

where the prefactor ðdx=dxÞ2 ensures monicity.
If L;M are monic second-order operators on C (resp. C0), L is said to be

projectively equivalent to M (written LBM) iff any ratio of independent

solutions of Mu ¼ 0 is a ratio of solutions of Lu ¼ 0; i.e., iff M ¼ h
1
3L3h for

some hAK (resp. K 0). Note that if M is normal-form, then hp
ffiffiffiffiffiffiffiffiffiffiffi
wðLÞ

p
as in (2.2), and

M is uniquely determined by L:
If L;L0 are monic second-order operators on C;C0; L is said to be a weak

pullback of L0 (hereafter, a pullback) if there are tAK ; t0AK 0; ratios of independent
solutions of Lu ¼ 0; L0u0 ¼ 0; with t ¼ t03x: That is, LBM and L0BM 0; with M a
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strong pullback of M 0: Pullbacks are not unique, though there is a unique normal-
form pullback.

Lemma 2.1. L ¼ D2 þA � D þB on C is a pullback by x : C-P1ðCÞ of the normal-

form operator L0 ¼ D2
z þB0 on P1ðCÞ iff


 DA=2
A2=4þB

¼ 1

2

d

dx

d2x=dx2

dx=dx

� �

 1

4

d2x=dx2

dx=dx

� �2

þðdx=dxÞ2B0ðxðxÞÞ: ð2:4Þ

If this is the case, the solution space of Lu ¼ 0 is spanned byffiffiffiffiffiffiffiffiffiffiffi
wðLÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðt03xÞ

p ;

ffiffiffiffiffiffiffiffiffiffiffi
wðLÞ

p
ðt03xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dðt03xÞ
p ; ð2:5Þ

where t0 is any ratio of independent solutions of L0u0 ¼ 0:

Proof. The strong pullback of L0 is given by (2.3), and according to formula (2.2),

the unique normal-form weak pullback of L0 will be D2 þ #B; where #B is defined as
the right-hand side of (2.4). But as computed in (2.2), an operator of the form

D2 þ #B is projectively equivalent to L iff #B ¼ 
DA=2
A2=4þB: The final
statement follows from the above remarks about the solution space of Lu ¼ 0 in

relation to that of ðD2 þ #BÞû ¼ 0: &

We now specialize to operators F ¼ D2 þA � D þB on C that are Fuchsian, i.e.,
have two characteristic exponents ai;1; ai;2AC (which may be the same) at each

singular point Pi: If ai;1 
 ai;2eZ; this means Fy ¼ 0 has solutions yi; j; j ¼ 1; 2; at Pi

that are of the form tai; j times an invertible function of t; where t is a local
uniformizing parameter (if ai;1 
 ai;2AZ; one solution may be logarithmic). The

exponent differences rðF ;PiÞ ¼ ai;1 
 ai;2 are defined up to sign; when rAR; the
convention rX0 will be adhered to. At each ordinary point, the exponents are 0; 1;
so the exponent difference is unity.
Theorem 2.2 is Klein’s pullback theorem, taken from [1, Theorem 1.8]. The

auxiliary Table 1 is the basic Schwarz list of exponent differences l; m; n: The
hypergeometric operator Ll;m;n corresponding to each row has a full set of algebraic

solutions, and there is a ratio t0 of solutions which, as an algebraic function from

zAP1ðCÞ to t0AP1ðCÞ; is the inverse of a single-valued, i.e., rational, ‘polyhedral
function’ z ¼ zðt0Þ: These are tabulated in the final column, which is adapted from
[14, Section 31; 15, Section 14.3]. Each is automorphic under the corresponding finite
subgroup of the Möbius group.

Theorem 2.2. Let F ¼ D2 þA � D þB be a Fuchsian operator on C, with A;BAK ;
and suppose that GðFÞ is finite. There is a unique l; m; n on the basic Schwarz list such
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that GðFÞ is isomorphic to GðLl;m;nÞ and F is a pullback of Ll;m;n by some rational map

x : C-P1ðCÞ; where x is unramified over P1ðCÞ\f0; 1;Ng: Moreover, if for any l; m; n
on the list, F is a pullback of Ll;m;n; then GðFÞ is isomorphic to a subgroup of GðLl;m;nÞ:

If GðFÞ is finite and the Wronskian wðFÞ is algebraic, Fu ¼ 0 will have a full set of

algebraic solutions; and if l; m; n and the pullback map x : C-P1ðCÞ; which are
guaranteed to exist by Theorem 2.2, are known, a basis for the solution space of
Fu ¼ 0 may be computed from (2.5), in which t0 ¼ t0ðzÞ is the inverse of the
polyhedral function in the final column of the table.
It is worth noting that as algebraic functions, the possible t0 are quite special. Each

is ramified over z ¼ 0; 1;N; at most, and the ramification order of each of the points

in ðt0Þ
1ð0Þ; ðt0Þ
1ð1Þ; ðt0Þ
1ðNÞ is 1=l
 1; 1=m
 1; 1=n
 1; respectively. That is,
if m denotes the mapping degree of z ¼ zðt0Þ; i.e., m ¼ jGðLl;m;nÞj; the projective

monodromy of Ll;m;nv ¼ 0 around each of the singular points z ¼ 0; 1;N is always a

restricted sort of permutation of the m branches of t0; the cycle decomposition of
which comprises, respectively, lm cycles of length 1=l; mm cycles of length 1=m; and
nm cycles of length 1=n:

Lemma 2.3. Suppose the Fuchsian operator F ¼ D2 þA � D þB is a pullback of

Ll;m;n via x : C-P1ðCÞ: The exponent difference rðF ;PÞ at any PAC equals h times

the exponent difference rðLl;m;n; xðPÞÞ; if h is the multiplicity with which P is mapped to

xðPÞ; i.e., 1 plus the ramification order of x at P.

Proof. Consider the series expansions of solution ratios t; t0 of Fy ¼ 0; Ll;m;ny ¼ 0 at

P; xðPÞ; respectively. Each is of the form tr times an invertible function of t; where t

is a uniformizing parameter; and locally, xðtÞBth: &

Lemma 2.3 constrains the Fuchsian operators F to which Theorem 2.2 can be
applied, i.e., F for which GðFÞ is finite. For example, there must be a row of Table 1
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Table 1

The basic Schwarz list

Case l;m; n Group Solution ratio inverse, z ¼ zðwÞ

— 1=n; 1; 1=n Cn wn

I 1=2; 1=2; 1=n Dn ðwn þ 1Þ2

4wn

II 1=2; 1=3; 1=3 A4 12
ffiffiffiffiffiffiffi

3

p
w2ðw4 
 1Þ2

ðw4 þ 2
ffiffiffiffiffiffiffi

3

p
w2 þ 1Þ3

IV 1=2; 1=3; 1=4 S4 
ðw12 
 33w8 
 33w4 þ 1Þ2

108w4ðw4 
 1Þ4
VI 1=2; 1=3; 1=5 A5 ½w30 þ 522ðw25 
 w5Þ 
 10005ðw20 þ w10Þ þ 1�2

1728w5ðw10 þ 11w5 
 1Þ5
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such that each of the singular point exponent differences frðF ;PiÞgr
i¼1 is an integer

multiple of one of the corresponding l; m; n: It also constrains the monodromy at
each Pi: Suppose without loss of generality that xðPiÞ ¼ 0: The projective
monodromy of Ll;m;nv ¼ 0 around z ¼ 0 permutes the m branches of t0; and the

cycle decomposition of the permutation comprises lm cycles of length 1=l: So the
projective monodromy of Fu ¼ 0 around Pi must be isomorphic to an integer power
of such a permutation. Together with the fact that GðFÞ; the group of permutations
of the branches of t which is generated by these monodromies, must be identical to
the Galois group of t over K (rather than being a proper subset of it), this imposes
substantial constraints.
The following lemma will be used in the next section.

Lemma 2.4. If Lc;B is an algebraic-form Lam !e operator with finite projective

monodromy group, so that it is a pullback of some Ll;m;n on the basic Schwarz list

by a rational map x : P1ðCÞ-P1ðCÞ of the sort guaranteed to exist by Theorem 2.2,
then provided cþ 1=2eZ; x must map the set of singular points fe1; e2; e3;Ng into

f0; 1;Ng:

Proof. The only ramification points of x are above z ¼ 0; 1;N: So if
xðPÞef0; 1;Ng; rðLc;B;PÞ ¼ rðLl;m;n; xðPÞÞ ¼ 1 by Lemma 2.3. Since rðLc;B; eiÞ ¼
1=2 and rðLc;B;NÞ ¼ 7ðcþ 1=2Þ; the claim follows. &

3. Key results

Theorem 3.1. The equation Lc;Bu ¼ 0 on P1ðCÞ has a full set of algebraic solutions,

i.e., solutions algebraic over CðxÞ; iff GðLc;BÞ is finite. In the nonclassical case

2ceZ; GðLc;BÞ is finite iff it is octahedral (i.e., isomorphic to S4), in which case c must

equal n71=6 or n71=4; with n an integer; or icosahedral (i.e., isomorphic to A5), in

which case c must equal n71=10; n71=6; or n73=10; with n an integer.

Proof. The Wronskian wðLc;BÞ equals
Q3

i¼1ðx 
 eiÞ
1=2; which is algebraic; so

Lc;Bu ¼ 0 having a full set of algebraic solutions is equivalent to finiteness of GðLc;BÞ:
The necessary conditions on c come from conditions imposed by Lemma 2.3 on
pullbacks of Lc;B from Ll;m;n on the basic Schwarz list, since such a pullback is

guaranteed to exist by Theorem 2.2. As the final sentence of that theorem
acknowledges, a Fuchsian operator F can be a pullback of Ll;m;n with GðFÞ
isomorphic to a proper subgroup of GðLl;m;nÞ; rather to GðLl;m;nÞ: To compensate,

one must consider the various Ll;m;n ‘in order’. The rows of Table 1 are ordered

so that if G2 appears in a later row than G1; then G2 is not isomorphic to a
subgroup of G1:
The analysis begins with the tetrahedral row, since it is a classical result that if

2ceZ; GðLc;BÞ cannot be cyclic or dihedral. If GðLc;BÞ is tetrahedral, Lc;B must be a
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pullback of L1=2;1=3;1=3: The operator Lc;B has exponent differences

1=2; 1=2; 1=2; 7ðcþ 1=2Þ at x ¼ e1; e2; e3;N; respectively. It follows from
Lemmas 2.4 and 2.3 that x must map e1; e2; e3 to 0: Also, it must map N to 1 or

N: Hence x
1ð1Þ; resp. x
1ðNÞ; must comprise only ordinary points with exponent

differences equal to unity. By Lemma 2.3, each point in x
1ð1Þ; resp. x
1ðNÞ; must
be mapped triply to N: So 3jdeg x: This can be combined with the prediction of the
‘degree formula’ of Baldassarri and Dwork [3, Lemma 1.5], which is derived from the
Hurwitz genus formula. If F ; a second-order Fuchsian operator on an algebraic curve
C with genus g; has exponent differences frig and is a pullback by a rational function
x from F 0; a Fuchsian operator on P1ðCÞ with exponent differences fr0ig; then

2
 2g þ
X

i

ðri 
 1Þ
" #

¼ ðdeg xÞ 2þ
X

i

ðr0i 
 1Þ
" #

: ð3:1Þ

The degree formula (3.1) yields 7ðcþ 1=2Þ 
 1=2 ¼ ðdeg xÞ=6 when applied to F ¼
Lc;B; F 0 ¼ L1=2;1=3;1=3: In conjunction with 3jdeg x; this contradicts 2ceZ: [This ruling
out of the tetrahedral alternative is taken from [2, Proposition 3.1].]
If GðLc;BÞ is octahedral, Lc;B must be a pullback of L1=2;1=3;1=4: The point x ¼ N

cannot be mapped to 0; since by Lemma 2.3 that would imply that cþ 1=2 is an
integer multiple of 1=2; which is a contradiction. However, it can be mapped to 1; in
which case cþ 1=2 must be an integer multiple of 1=3; or to N; in which case
cþ 1=2 must be an integer multiple of 1=4: That is, c must equal n71=6 or n71=4;
with n an integer. [The possibility that xðNÞ ¼ 1 was erroneously ruled out in [2,
Section 3], by an argument based on the incorrect assumption that xðeiÞmust equal 0
for all i:]
If GðLc;BÞ is icosahedral, Lc;B must be a pullback of L1=2;1=3;1=5: As in the

octahedral case, x ¼ N cannot be mapped to 0: It can be mapped to 1; in which case
cþ 1=2 must be an integer multiple of 1=3; or to N; in which case cþ 1=2 must be
an integer multiple of 1=5: That is, c must equal n71=6; with n an integer, or
n71=10 or n73=10; with n an integer. &

According to Propositions 3.4 and 3.5 below, the five alternatives listed in
Theorem 3.1 can each be realized.

Definition 3.2. The harmonic case is the case when J ¼ 1; i.e., when g3 ¼ 0; so that
the unordered set fe1; e2; e3g comprises three equally spaced collinear points in C;
i.e., is of the form af
1; 0; 1g: The equianharmonic case is the case when J ¼ 0; i.e.,
when g2 ¼ 0; so that fe1; e2; e3g is the vertex set of an equilateral triangle in C; i.e., is
of the form af1;o;o2g with o3 ¼ 1: In both cases, aa0 is arbitrary.

Lemma 3.3. In the harmonic case, Lc;0 is a pullback of L1=2;ð2cþ1Þ=4;1=4; and in the

equianharmonic case, Lc;0 is a pullback of L1=2;1=3;ð2cþ1Þ=6: Here cAC is arbitrary.

These pullbacks are via maps x which up to composition with M .obius transformations

are of the cyclic form xðxÞ ¼ xk; where k ¼ 2; 3; respectively.
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Proof. The map x2ðxÞ ¼
def

x2 takes x ¼ 0;N to 0;N; each with multiplicity 2,

and x ¼ 71 to 1 with multiplicity 1. By the theory of Fuchsian differential
operators, any pullback of Ll;m;n via x2 will be a Fuchsian operator with 
1; 0; 1;N
as its only possible singular points. By Lemma 2.3, the respective
exponent differences will be m; 2l; m; 2n: If l; m; n ¼ 1=4; 1=2; ð2cþ 1Þ=4; the
singular point locations and exponent differences will be identical to those of

Lc;B (harmonic case). Similarly, any pullback of Ll;m;n via x3ðxÞ ¼
def

x3 will

have singular points 0; 1;o;o2;N; with exponent differences 3l; m; m; m; 3n: If
l; m; n ¼ 1=3; 1=2; ð2cþ 1Þ=6; the point x ¼ 0 will become an ordinary point, and the
singular point locations and exponent differences will be identical to those of Lc;B

(equianharmonic case).
The value for the accessory parameter B of the pullback can be shown to be zero in

both cases. This follows from Lemma 2.1, since in both cases a computation (omitted
here) yields equal values for the left-hand and right-hand sides of (2.4), irrespective
of c; iff B is set equal to zero. It also follows from a theorem of [11], which
determines the values of the accessory parameter and exponent parameters for which
Heun operators are strong pullbacks of Ll;m;n:

The permutation of 1=4; 1=2; ð2cþ 1Þ=4 into 1=2; ð2cþ 1Þ=4; 1=4; as required by
the statement of the lemma, is accomplished by choosing x ¼ M3x2; where MðzÞ ¼
ðz 
 1Þ=z is the Möbius transformation that maps 0; 1;N to N; 0; 1: So in the

harmonic case, xðxÞ ¼ ðx2 
 1Þ=x2: Similarly, the permutation of 1=3; 1=2;
ð2cþ 1Þ=6 into 1=2; 1=3; ð2cþ 1Þ=6 is accomplished by composing x3 with the

map z/1
 z: So in the equianharmonic case, xðxÞ ¼ 1
 x3: &

It should be noted that cyclic pullbacks of hypergeometric operators have
been studied or applied by several other authors. In the harmonic case,
Ivanov [8] discovered that the Jacobi form of the Lamé equation can be
reduced to the hypergeometric equation, via a quadratic transformation

analogous to xðxÞ ¼ x2: In the equianharmonic case, Clarkson and Olver [5]
discovered that the Weierstrass form of the Lamé equation can be similarly

reduced, via a cubic transformation analogous to xðxÞ ¼ x3: Our efforts to
understand their results led to [11], and ultimately to this paper. Recently, the
Clarkson–Olver transformation has been applied by Kantowski and
Thomas [9, Eq. (12)].

Proposition 3.4. Let n denote an integer.

(1) In the harmonic case ðJ ¼ 1Þ; GðLn71=6;0Þ is octahedral if n � 0 ðmod 2Þ; resp.

n � 1ðmod 2Þ:
(2) In the equianharmonic case ðJ ¼ 0Þ:

(a) GðLn71=4;0Þ is octahedral if n � 0ðmod 3Þ; resp. n � 2 ðmod 3Þ:
(b) GðLn71=10;0Þ is icosahedral if n � 0ðmod 3Þ; resp. n � 2 ðmod 3Þ:
(c) GðLn73=10;0Þ is icosahedral if n � 1ðmod 3Þ:
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Proof. This follows from Lemma 3.3, together with Schwarz’s classical character-
ization of the l; m; n for which GðLl;m;nÞ is finite. If the unordered triple l; m; n appears
on the full Schwarz list, then GðLl;m;nÞ will be finite, and the same will be true if a

normalized version of l;m; n appears there. Normalization is performed by replacing
l; m; n by a7l; b7m; c7n; where a; b; c are any integers whose sum is even (see [7,
Section 2.7.2; 14, Section 28]). Preservation of algebraicity can be verified from the
Gauss contiguity relations, which solutions of hypergeometric equations must
satisfy.
The full list includes Cases I, II, IV, VI of Table 1, and also, among others, the

icosahedral Case XIV, for which l; m; n ¼ 1=2; 2=5; 1=3 (see [7, Section 2.7.2; 14,
Section 30]). By choosing appropriate integers a; b; c (and interchanging the m; n of
Case XIV), it is readily verified that GðLl;m;nÞ is isomorphic to

(1) S4 if l; m; n ¼ 1=2; k; 1=4 with kAZ71=3 [Case IV].
(2)

(a) S4 if l; m; n ¼ 1=2; 1=3; k with kAZ71=4 [Case IV].
(b) A5 if l; m; n ¼ 1=2; 1=3; k with kAZ71=5 [Case VI].
(c) A5 if l; m; n ¼ 1=2; 1=3; k with kAZ72=5 [Case XIV].

By Lemma 3.3, each of these Ll;m;n can be pulled back to a Lamé operator of the

form Lc;0; with c determined by ð2cþ 1Þ=4 ¼ k (Case 1), or by ð2cþ 1Þ=6 ¼ k (Cases

2(a)–2(c)). The operators Lc;0 of the proposition are a proper subset: the ones for

which 2ceZ: The reason for imposing this additional restriction is that if 2ceZ;
GðLc;0Þ is guaranteed to be isomorphic to GðLl;m;nÞ; rather than to a proper

subgroup. That is because, by Theorem 3.1, the only possible groups are S4 and A5;
and neither is a subgroup of the other. &

Case 1 of Proposition 3.4 provides a counterexample to the necessary condition of
[2]. It should be mentioned that Case 2(b) is actually a generalization of another
result of [2], which is that in the equianharmonic case, L1=10;0 can be pulled back

from L1=2;1=3;1=4 via a degree-3 cyclic map. In fact, Baldassarri was the first to see the

relevance of degree-3 cyclic maps in this context.
The following proposition shows that the remaining alternative of Theorem 3.1,

which Proposition 3.4 did not cover, can also be realized. Unlike Proposition 3.4, it
is specific to a single value of c; and also to a nonzero value of the accessory
parameter B:

Proposition 3.5. Suppose that J ¼ 
80; i.e., g2 ¼ 80a2=3 and g3 ¼ 
80a3=3 for some

aa0; equivalently, that e1; e2; e3 are the roots of 3x3 
 20x þ 20; multiplied by some

aa0: Then GðL1=6;
a=9Þ is icosahedral.

Proof. This c ¼ 1=6 example was constructed by a method suggested by the proof of
Lemma 3.3. The method proceeds as follows. The first step is to find a rational xðxÞ;
unramified over P1ðCÞ\f0; 1;Ng; such that the pullback of L1=2;1=3;1=5 has the same
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exponent differences as any L1=6;B: The three singular points of the pullback that

have exponent difference 1=2 are taken to be e1; e2; e3: The second step is to use the
formula (2.4) of Lemma 2.1 to compute the unique B for which L1=6;B with this

choice of e1; e2; e3 is, in fact, the pullback.
It was noted in the proof of Theorem 3.1 that in the cAZ71=6 icosahedral

case, x must map the singular point x ¼ N to z ¼ 1: Since x ¼ N has
exponent difference 7ðcþ 1=2Þ ¼ 72=3; the mapping must have multiplicity 2. In
the same way, it follows that x must map each ei to z ¼ 0 with multiplicity 1. The

function x is characterized by the points in x
1ðf0; 1;NgÞ and the multiplicities with
which they are mapped. Suppose that x
1ð0Þ includes n0 ordinary points, besides

e1; e2; e3; that x
1ð1Þ includes n1 ordinary points, besides N; and that x
1ðNÞ
includes nN ordinary points. By Lemma 2.3, x must map each of the n0; n1; nN

ordinary points with multiplicity 2; 3; 5; respectively. The integers n0; n1; nN

must satisfy

3þ 2n0 ¼ 2þ 3n1 ¼ 5nN ¼ deg x; ð3:2Þ

ð3þ n0Þ þ ð1þ n1Þ þ nN ¼ 2þ deg x: ð3:3Þ

Here (3.2) is the degree condition. Eq. (3.3) is a consequence of the Hurwitz formula,

according to which any rational map x : C-P1ðCÞ from a nonsingular algebraic

curve C of genus g to P1ðCÞ that is unramified above P1ðCÞ\fP1;y;Prg satisfies

jx
1ðfP1;y;PrgÞj ¼ 2
 2g þ ðr 
 2Þ deg x:
The only solution of (3.2) and (3.3) is n0 ¼ n1 ¼ nN ¼ 1; with deg x ¼ 5: So any

function x by which an operator of the form L1=6;B can be pulled back from

L1=2;1=3;1=5 must be of the form

xðxÞ ¼ ðx 
 C1Þðx 
 C2Þðx 
 C3Þðx 
 C4Þ2

ðx 
 C5Þ5
¼ 1
 C6ðx 
 C7Þ3

ðx 
 C5Þ5
ð3:4Þ

for certain C1;y;C7AC; where C1;C2;C3 are to be identified with e1; e2; e3:
Solutions of (3.4) may be constructed by elimination theory. Imposing the condition
e1 þ e2 þ e3 ¼ 0 yields an essentially unique solution, namely

xðxÞ ¼ ð3x3 
 20x þ 20Þð2x 
 5Þ2

12ðx 
 1Þ5
¼ 1
 ð5x 
 8Þ3

12ðx 
 1Þ5
; ð3:5Þ

which requires g2 ¼ 80=3 and g3 ¼ 
80=3: On the right-hand side of (3.5),
x may be replaced by x=a for any aAC\f0g: It follows by substituting (3.5) into
(2.4), and some algebraic manipulation, that L1=6;B will be a pullback iff B ¼ 
a=9:
The a-dependence is due to B not being scale-invariant. &
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Corollary 3.6. In the nonclassical case 2ceZ; finite projective monodromy of the

Lam !e equation is not uniquely determined by c:

Proof. By Propositions 3.4 and 3.5, GðL1=6;BÞ is octahedral when J ¼ 1 and

icosahedral when J ¼ 
80; if in each case, B is appropriately chosen. &

4. Explicit formulas

In practical applications of the Lamé equation, such as the astro-
physical application of [9], it is useful to have explicit formulas for the
algebraic solutions, if any. The five cases of the following proposition, which
correspond to the four cases of Proposition 3.4 and to Proposition 3.5, should serve
as examples.

Proposition 4.1. Let t ¼ tðxÞ; an algebraic complex-valued function of a complex

argument, be defined as follows:

(1) In the harmonic case fe1; e2; e3g ¼ f
1; 0; 1g; if c ¼ 1=6 and B ¼ 0; let t be

defined by

ðt12 
 33t8 
 33t4 þ 1Þ2

108 t4ðt4 
 1Þ4
¼ x2 
 1

x2
:

(2) In the equianharmonic case fe1; e2; e3g ¼ f1;o;o2g:
(a) if c ¼ 1=4 and B ¼ 0; let t be defined by


ðt12 
 33t8 
 33t4 þ 1Þ2

108t4ðt4 
 1Þ4
¼ 1
 x3;

(b) if c ¼ 1=10 and B ¼ 0; let t be defined by

½t30 þ 522ðt25 
 t5Þ 
 10005ðt20 þ t10Þ þ 1�2

1728 t5ðt10 þ 11t5 
 1Þ5
¼ 1
 x3;

(c) if c ¼ 7=10 and B ¼ 0; let t be defined by

½t30 þ 522ðt25 
 t5Þ 
 10005ðt20 þ t10Þ þ 1�2

1728 t5ðt10 þ 11t5 
 1Þ5

¼ sð157464s3 
 352107s2 þ 708750s 
 546875Þ2

ð189s 
 125Þ5
;

where s signifies 1
 x3:
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(3) In the case when e1; e2; e3 are the roots of 3x3 
 20x þ 20; if c ¼ 1=6 and B ¼

1=9; let t be defined by

½t30 þ 522ðt25 
 t5Þ 
 10005ðt20 þ t10Þ þ 1�2

1728 t5ðt10 þ 11t5 
 1Þ5

¼ ð3x3 
 20x þ 20Þð2x 
 5Þ2

12ðx 
 1Þ5
:

In each of these five cases, the Lam !e equation Lc;Bu ¼ 0 has a full set of algebraic

solutions. Its solution space is spanned by

Y3
i¼1

ðx 
 eiÞ
" #
1=4

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
dt=dx

p ;
tffiffiffiffiffiffiffiffiffiffiffiffiffi

dt=dx
p

( )
; ð4:1Þ

where t is case-specific. In cases 1 and 2(a), the projective monodromy group GðLc;BÞ;
i.e., the Galois group of t over CðxÞ; is octahedral, and in cases 2(b), 2(c), and 3, it is

icosahedral.

Proof. The solution space (4.1) is of the form specified by Lemma 2.1 in (2.5). In
each case, t is defined so that t ¼ t03x; where x is the rational function by which Lc;B

is pulled back from some Ll;m;n; and t0 is a ratio of solutions of Ll;m;nv ¼ 0: In all cases

except 2(c), the right-hand side of the defining equation is z ¼ xðxÞ; as supplied in the
proof of Lemma 3.3 or the proof of Proposition 3.5, and the left-hand side is
the appropriate polyhedral function, as supplied in the final column of Table 1,
applied to t:
Case 2(c) is special. As was sketched in the proof of Proposition 3.4, L7=10;0 is the

pullback via xðxÞ ¼ 1
 x3 of L1=2;1=3;2=5; which is Schwarz’s Case XIV (modulo the

interchange of m; n). Case XIV is not on the basic Schwarz list, and in fact, it is not
the case that a ratio t0 ¼ t0ðzÞ of independent solutions of L1=2;1=3;2=5v ¼ 0 is the

inverse of a rational function. However, Case XIV is itself a pullback of the basic

icosahedral Case VI. So one can choose t0 ¼ t003x0; where x0 is the rational function
by which L1=2;1=3;2=5 is pulled back from L1=2;1=3;1=5; and t00 is a ratio of solutions of

L1=2;1=3;1=5v ¼ 0; the inverse of which is listed in Table 1. The formula in Case 2(c)

defines t so that t ¼ t03x ¼ t003x03x:
A rational map %x equivalent to x0 was worked out by Klein in 1877, in a paper in

which he completed the reduction of the Schwarz list to the basic Schwarz list [10,
Section 10]. His formula was

%xðsÞ ¼ 1
 ð64s þ 189Þð64s2 þ 133s þ 49Þ3

77 � 27 � ðs þ 1Þ2
; ð4:2Þ

which maps s ¼ 0;
189=64;
1; respectively to %xðsÞ ¼ 0; 1;N: For our purposes,
this morphism must be composed with a Möbius transformation. Composing with
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MðsÞ ¼ 189s=ð125
 189sÞ; which takes s ¼ 0; 1;N to MðsÞ ¼ 0;
189=64;
1;
yields

ð%x3MÞðsÞ ¼ sð157464s3 
 352107s2 þ 708750s 
 546875Þ2

ð189s 
 125Þ5
ð4:3Þ

as the rational map x0 ¼ x0ðsÞ by which L1=2;1=3;2=5 is pulled back from L1=2;1=3;1=5:

This map appears on the right-hand side in Case 2(c). &

5. The Weierstrass form

In classical treatments [17], the Weierstrass-form Lamé equation is regarded as an
equation on C; of the form

d2u

dt2

 ½cðcþ 1ÞYðtÞ þ B�u ¼ 0: ð5:1Þ

Here Y : C-P1ðCÞ is the Weierstrass Y-function corresponding to some period

lattice L ¼ o1Zþ o2ZCC; with o1;o2 independent over R; i.e., ðY0Þ2 ¼ 4Y3 

g2Y
 g3 for some g2; g3AC for which D ¼ g32 
 27g23a0: Eq. (5.1) is a Schrödinger

equation with an elliptic potential, extended to the complex domain. The algebraic
Lamé equation Lc;Bu ¼ 0 can be obtained from (5.1) by the substitution x ¼ YðtÞ:
That is, (5.1) is the strong pullback to C of Lc;Bu ¼ 0 by Y:

Another interpretation is possible. The map Y : C-P1ðCÞ is the composition of

two maps, f : C-Eg2;g3 and p : Eg2;g3-P1ðCÞ: Here Eg2;g3 is the elliptic curve

specified by y2 ¼ 4x3 
 g2x 
 g3; and the maps f and p are defined by fðtÞ ¼
ðYðtÞ;Y0ðtÞÞ and pðx; yÞ ¼ x: Eg2;g3 is homeomorphic to a torus, and the projection p
is a double cover of P1ðCÞ by Eg2;g3 : From an algebraic–geometric point of view, it is

more reasonable to pull the algebraic-form Lamé equation back to Eg2;g3 via p; than
to C via p3f: We call the resulting equation on Eg2;g3 the Weierstrass-form Lamé

equation, and write it Lc;B;g2;g3u ¼ 0: By examination, the operator Lc;B;g2;g3 has only

one singular point, namely the point O; i.e., ðx; yÞ ¼ ðN;NÞ; where its characteristic
exponents are 
c; cþ 1: We shall informally regard Eg2;g3 as a subset of P1ðCÞ �
P1ðCÞ; coordinatized by ðx; yÞ; although in a more careful treatment Eg2;g3 would be

defined as the projective curve y2z ¼ 4x3 
 g2xz2 
 g3z
3 in P2ðCÞ; equipped with

homogeneous coordinates ðx; y; zÞ:
The pullback theory of Section 2 applies when the algebraic curve C equals Eg2;g3 ;

just as it applied when C ¼ P1ðCÞ and K ¼ CðxÞ: The function field K̃ on Eg2;g3 is

Cðx; yÞ*CðxÞ; a degree-2 extension, and the derivation D ¼ d=dx extends in the

obvious way to K̃; via Dy ¼defð12x2 
 g2Þ=2y: With these choices, Lc;B;g2;g3 is of the

form D2 þ *A � D þ *B; for *A; *BAKCK̃: Since the Wronskian is algebraic, the
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projective monodromy group GðLc;B;g2;g3Þ is finite iff a ratio of solutions *t of

Lc;B;g2;g3u ¼ 0 on Eg2;g3 is algebraic over Cðx; yÞ: This is equivalent to GðLc;BÞ being
finite, which occurs iff a ratio of solutions t of Lc;Bu ¼ 0 on P1ðCÞ is algebraic over
CðxÞ: The equivalence is due to the (local) pullback property *t ¼ t3p; which implies
that the two sorts of algebraicity are equivalent. But the two groups may not be
isomorphic. This is because *tmay have lower degree over Cðx; yÞ than t has over CðxÞ:
In a thought-provoking paper, Churchill [4] examined the implications of finite

group theory for the monodromy of Lc;B;g2;g3 ; as well as for the monodromy of the

hypergeometric operator Ll;m;n: The (projective) monodromy group of Ll;m;n is doubly

generated: it is generated by the images of loops around any two of the singular
points z ¼ 0; 1;N: Similarly, since Eg2;g3 is homeomorphic to a torus, the (projective)

monodromy group of Lc;B;g2;g3 is generated by the images of only two loops. But the

conjugacy classes of the two monodromy (resp. projective monodromy) generators in
GLð2;CÞ (resp. PGLð2;CÞ) are determined by the characteristic exponents of the
singular point(s). This constrains what, up to isomorphism, the monodromy group
(resp. projective monodromy group) may be, in the case when it is finite.
In this way, Churchill was able to obtain significant results on the projective

monodromy of Lc;B;g2;g3 without using pullbacks. Like GðLc;BÞ; GðLc;B;g2;g3Þ can

never be cyclic, and can be dihedral only if 2cAZ:Moreover, in the nonclassical case
2ceZ; it cannot be dihedral. He showed that in the nonclassical case, GðLc;B;g2;g3Þ
can be tetrahedral only if cAZ71=4; and can be octahedral or icosahedral only if
cAZ71=10; cAZ71=6; or cAZ73=10:
Necessarily GðLc;B;g2;g3ÞIGðLc;BÞ [4], so conditions on GðLc;B;g2;g3Þ yield condi-

tions on GðLc;BÞ; and vice versa. By combining his results with those of [2], Churchill
was able to deduce that GðLc;B;g2;g3Þ cannot be octahedral. Unfortunately, this is

incorrect: the proofs of Theorem 5.3 and Corollary 5.4 of [4], which include this
assertion, rely crucially on the incorrect result of [2] that GðLc;BÞ can be octahedral

only if cAZ71=4:
Theorem 5.1 is a characterization of GðLc;B;g2;g3Þ as well as GðLc;BÞ; which is

obtained from pullback theory alone. This theorem builds on and subsumes
Theorem 3.1.

Theorem 5.1. The equation Lc;B;g2;g3u ¼ 0 on Eg2;g3 has a full set of algebraic solutions

iff GðLc;B;g2;g3Þ is finite, which is equivalent to Lc;Bu ¼ 0 on P1ðCÞ having a full set of

algebraic solutions, and to GðLc;BÞ being finite. In the nonclassical case 2ceZ; the

following are the only ways this can occur.

(1) GðLc;B;g2;g3Þ is tetrahedral and GðLc;BÞ is octahedral; in which case c must equal

n71=4; with n an integer.
(2) GðLc;B;g2;g3Þ is octahedral and GðLc;BÞ is octahedral; in which case c must equal

n71=6; with n an integer.
(3) GðLc;B;g2;g3Þ is icosahedral and GðLc;BÞ is icosahedral; in which case c must equal

n71=10; n71=6; or n73=10; with n an integer.

All five of the preceding alternatives can be realized.
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Proof. The first sentence has already been proved. The proof of the necessary
conditions on c for GðLc;B;g2;g3Þ to be each possible finite group is similar to the proof of
Theorem 3.1: it runs down the rows of the basic Schwarz list, beginning with the
tetrahedral. Before beginning the proof, note that the pullback function x guaranteed to
exist by Theorem 2.2 will map the lone singular point O of Lc;B;g2;g3 to one of f0; 1;Ng;
since the exponent difference at O is 7ð2cþ 1Þ; and an analogue of Lemma 2.4 holds.
Also, note that the degree formula (3.1) of Baldassarri and Dwork yields7c ¼ ðdeg xÞ=3
when applied to F ¼ Lc;B;g2;g3 and F 0 ¼ L1=2;1=3;1=3; and 7c ¼ ðdeg xÞ=6 when applied

to F ¼ Lc;B;g2;g3 and F 0 ¼ L1=2;1=3;1=4; since Eg2;g3 ; being elliptic, has genus g ¼ 1:

If GðLc;B;g2;g3Þ is tetrahedral, Lc;B;g2;g3 must be a pullback of L1=2;1=3;1=3: By

Lemma 2.3, if xðOÞ ¼ 0 then 2cþ 1 is an integer multiple of 1=2; i.e., cAZ71=4:
The possibilities xðOÞ ¼ 1;N can be ruled out, since they would imply

respectively that x
1ðNÞ; x
1ð1Þ consists of ordinary points, each mapped with
multiplicity 3. Either would imply 3jdeg x; which with 7c ¼ ðdeg xÞ=3 would
contradict 2ceZ:
If GðLc;B;g2;g3Þ is octahedral, Lc;B;g2;g3 must be a pullback of L1=2;1=3;1=4: By Lemma

2.3, if xðOÞ ¼ 1 then 2cþ 1 is an integer multiple of 1=3; i.e., cAZ71=6: The

possibilities xðOÞ ¼ 0;N can be ruled out. If xðOÞ ¼ 0 then x
1ð1Þ; x
1ðNÞ consist
of ordinary points, each mapped with multiplicity 3,4, respectively. This would imply
3jdeg x and 4jdeg x; hence 12jdeg x; which with 7c ¼ ðdeg xÞ=6 would contradict
2ceZ: xðOÞ ¼ N is ruled out similarly.
If GðLc;B;g2;g3Þ is icosahedral, Lc;B;g2;g3 must be a pullback of L1=2;1=3;1=5: By

Lemma 2.3, if xðOÞ ¼ 1 then 2cþ 1 is an integer multiple of 1=3; i.e., cAZ71=6;
and if xðOÞ ¼ N then 2cþ 1 is an integer multiple of 1=5; i.e., cAZ71=10 or
cAZ73=10: The possibility xðOÞ ¼ 0 can be ruled out, since it would imply that
2cþ 1 is an integer multiple of 1=2; i.e., cAZ71=4: The group GðLc;BÞ is finite if
Gc;B;g2;g3 is finite, so if xðOÞ ¼ 0; Theorem 3.1 implies that GðLc;BÞ is octahedral. But
GðLc;B;g2;g3Þ must be isomorphic to a subgroup of GðLc;BÞ:
The classification scheme of the theorem results from combining the just-derived

conditions on GðLc;B;g2;g3Þ with the conditions of Theorem 3.1 on GðLc;BÞ: That
GðLc;B;g2;g3Þ octahedral implies GðLc;BÞ octahedral is due to A5 not having any

normal S4 subgroup. The realizability of all five alternatives was proved in Section 3
(it follows from Propositions 3.4 and 3.5). &

By Theorem 5.1, GðLc;BÞ being octahedral does not uniquely determine the group
GðLc;B;g2;g3Þ: it may be either octahedral or tetrahedral. The latter occurs when the

extension Cðx; y; *tÞ=Cðx; yÞ has lower degree than Cðx; tÞ=CðxÞ: The two possibilities
are exemplified by Cases 1 and 2(a) of Proposition 4.1, respectively, which have
c;B; g2; g3 equal to 1=6; 0; 4; 0 and 1=4; 0; 0; 4: A ratio *t of solutions of Lc;B;g2;g3u ¼ 0

is specified by


ð*t12 
 33*t8 
 33*t4 þ 1Þ2

108*t4ð*t4 
 1Þ4
¼

x2 
 1

x2
; c;B; g2; g3 ¼ 1=6; 0; 4; 0;

1
 x3; c;B; g2; g3 ¼ 1=4; 0; 0; 4;

8<
: ð5:2Þ
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since *t ¼ t3p: In the second case, y2 ¼ 4x3 
 g2x 
 g3 ¼ 4x3 
 4; so 1
 x3 ¼ 
y2=4;
implying that the minimum polynomial of t over CðxÞ is reducible over Cðx; yÞ: In
fact, *t can be chosen to satisfy

*t12 
 33*t8 
 33*t4 þ 1

ð
ffiffiffiffiffiffiffiffi
108

p
=2Þ*t2ð*t4 
 1Þ2

¼ 7y; ð5:3Þ

where either sign is acceptable. Each sign yields a 12-branched algebraic function *t
on the equianharmonic elliptic curve E0;4 (with J ¼ 0) that projects to t; rather than
yielding a 24-branched function on E0;4: And Cðx; y; *tÞ is obtained from CðxÞ via the
tower CðxÞCCðx; yÞCCðx; y; *tÞ; where the extensions are algebraic of degrees 2 and
12, respectively. The group GðL1=4;0;0;4Þ; which is the Galois group of *t over Cðx; yÞ;
has order 12 and must be tetrahedral, i.e., isomorphic to A4:

In general, this reduction may not occur. In the first case of (5.2), in which y2 ¼
4x3 
 4x; the analogous substitution does not lead to a reduction of the degree. The
function *t on the harmonic elliptic curve E4;0 (with J ¼ 1) is 24-branched, like t; the
function to which it projects. So the group GðL1=6;0;4;0Þ has order 24 and must be

octahedral, i.e., isomorphic to S4:
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