1,710 research outputs found
Generation of the second-harmonic Bessel beams via nonlinear Bragg diffraction
We generate conical second-harmonic radiation by transverse excitation of a
two-dimensional annular periodically-poled nonlinear photonic structure with a
fundamental Gaussian beam. We show that these conical waves are the far-field
images of the Bessel beams generated in a crystal by parametric frequency
conversion assisted by nonlinear Bragg diffraction.Comment: 4 pages, 5 figures. submitte
The Effect of Clay Pozzolana-Cement-Composite on the Strength Development of a Hydraulic Backfill
The study sought to investigate the potential application of clay pozzolana as a supplement for cement in hydraulic backfill, using classified tailings from AngloGold Ashanti, Obuasi Mine. The percentage of the Portland cement that could be substituted with the clay pozzolana to produce backfill with best strength was determined. 10%, 25%, 30%, 35% and 40% of the ordinary Portland cement were replaced with clay pozzolana and then mixed with tailings and water. The slurry produced was cast into cylindrical specimen of 50mm diameter by 120mm high and tested for compressive strength after curing for 7, 14, 21, 28 and 56 days. The results indicate that, clay pozzolana-cement composite has potential for application in hydraulic back fill production without increased risk to safety and dilution. It was noted that hydraulic backfill with 10%, 25%, 30% and 35% of the ordinary portland cement replaced with clay pozzolana had strengths greater than those obtained for ordinary portland cement alone. Ten percent (10%) pozzolana content gave the maximum strength followed by 25% pozzolana. It is recommended that for safety and economic considerations, the cement content should be replaced by 25% pozzolana in the production of backfills. Keywords: Hydraulic Backfill, Portland Cement, Clay Pozzolana, Unconfined Compressive Strengt
Recommended from our members
Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug Delivery
We report a novel nanoparticulate drug delivery system that undergoes reversible volume change from 150 to 40 nm upon phototriggering with UV light. The volume change of these monodisperse nanoparticles comprising spiropyran, which undergoes reversible photoisomerization, and PEGylated lipid enables repetitive dosing from a single administration and enhances tissue penetration. The photoswitching allows particles to fluoresce and release drugs inside cells when illuminated with UV light. The mechanism of the light-induced size switching and triggered-release is studied. These particles provide spatiotemporal control of drug release and enhanced tissue penetration, useful properties in many disease states including cancer
Techniques utilized in the simulated altitude testing of a 2D-CD vectoring and reversing nozzle
Simulated altitude testing of a two-dimensional, convergent-divergent, thrust vectoring and reversing exhaust nozzle was accomplished. An important objective of this test was to develop test hardware and techniques to properly operate a vectoring and reversing nozzle within the confines of an altitude test facility. This report presents detailed information on the major test support systems utilized, the operational performance of the systems and the problems encountered, and test equipment improvements recommended for future tests. The most challenging support systems included the multi-axis thrust measurement system, vectored and reverse exhaust gas collection systems, and infrared temperature measurement systems used to evaluate and monitor the nozzle. The feasibility of testing a vectoring and reversing nozzle of this type in an altitude chamber was successfully demonstrated. Supporting systems performed as required. During reverser operation, engine exhaust gases were successfully captured and turned downstream. However, a small amount of exhaust gas spilled out the collector ducts' inlet openings when the reverser was opened more than 60 percent. The spillage did not affect engine or nozzle performance. The three infrared systems which viewed the nozzle through the exhaust collection system worked remarkably well considering the harsh environment
C-Reactive protein and risk of ESRD: results from the Trial to Reduce Cardiovascular Events With Aranesp Therapy (TREAT)
Background:
To better understand a potential association of elevated C-reactive protein (CRP) level with progression of chronic kidney disease (CKD), we examined the relationship of CRP level with the development of end-stage renal disease (ESRD) in the Trial to Reduce Cardiovascular Events With Aranesp Therapy (TREAT).
Study Design
Post hoc analysis of a randomized controlled trial.
Setting & Participants:
4,038 patients with type 2 diabetes, CKD, and anemia in TREAT.
Predictor:
Baseline serum CRP concentrations.
Outcomes:
The primary outcome was development of ESRD; secondary outcomes included doubling of serum creatinine level, a composite of ESRD/serum creatinine doubling, and a composite of death or ESRD.
Measurements:
We fit unadjusted and adjusted Cox regression models to test the association of baseline CRP level with time to the development of the outcomes of interest.
Results:
Mean age of participants was 67 years, 43% were men, and 64% were white. Approximately half (48%) the patients had CRP levels > 3.0 mg/L; 668 patients developed ESRD, and 1,270 developed the composite outcome of death or ESRD. Compared with patients with baseline CRP levels ≤ 3.0 mg/L, those with moderately/markedly elevated CRP levels (≥6.9 mg/L; 24% of patients) had a higher adjusted risk for ESRD (HR, 1.32; 95% CI, 1.07-1.63) and the composite outcome of death or ESRD (HR, 1.41; 95% CI, 1.21-1.64). Although nonsignificant, similar trends were noted in competing-risk models.
Limitations:
Results may not be generalizable to nondiabetic CKD or diabetic CKD in the absence of anemia.
Conclusions:
Elevated baseline CRP levels are common in type 2 diabetic patients with anemia and CKD and are associated with the future development of ESRD and the composite of death or ESRD
The Transcription Factor StuA Regulates Central Carbon Metabolism, Mycotoxin Production, and Effector Gene Expression in the Wheat Pathogen Stagonospora nodorum
The Stagonospora nodorum StuA transcription factor gene SnStuA was identified by homology searching in the genome of the wheat pathogen Stagonospora nodorum. Gene expression analysis revealed that SnStuA transcript abundance increased throughout infection and in vitro growth to peak during sporulation. To investigate its role, the gene was deleted by homologous recombination. The growth of the resulting mutants was retarded on glucose compared to the wild-type growth, and the mutants also failed to sporulate. Glutamateas a sole carbon source restored the growth rate defect observed on glucose, although sporulation remained impaired. The SnstuA strains were essentially nonpathogenic, with only minor growth observed around the point of inoculation. The role of SnstuA was investigated using metabolomics, which revealed that this gene's product played a key role in regulating central carbon metabolism, with glycolysis, the TCA cycle, and amino acid synthesis all affected in the mutants. SnStuA was also found to positively regulate the synthesis of the mycotoxin alternariol. Gene expression studies on the recently identified effectors in Stagonospora nodorum found that SnStuA was a positive regulator of SnTox3 but was not required for the expression of ToxA. This study has uncovered a multitude of novel regulatory targets of SnStuA and has highlighted the critical role of this gene product in the pathogenicity of Stagonospora nodorum
Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5
The reactive oxidizing species in the selective oxidation of methane to methanol in oxygen activated Cu-ZSM-5 was recently defined to be a bent mono(μ-oxo)dicopper(II) species, [Cu_2O]^(2+). In this communication we report the formation of an O_2-precursor of this reactive site with an associated absorption band at 29,000 cm^(-1). Laser excitation into this absorption feature yields a resonance Raman (rR) spectrum characterized by ^(18)O_2 isotope sensitive and insensitive vibrations, νO-O and νCu-Cu, at 736 (Δ^(18)O_2 = 41 cm^(-1)) and 269 cm^(-1), respectively. These define the precursor to be a μ-(η^2:η^2) peroxo dicopper(II) species, [Cu_2(O_2)]^(2+). rR experiments in combination with UV-vis absorption data show that this [Cu_2(O_2)]^(2+) species transforms directly into the [Cu_2O]^(2+) reactive site. Spectator Cu^+ sites in the zeolite ion-exchange sites provide the two electrons required to break the peroxo bond in the precursor. O_2-TPD experiments with ^(18)O_2 show the incorporation of the second ^(18)O atom into the zeolite lattice in the transformation of [Cu_2(O_2)]^(2+) into [Cu_2O]^(2+). This study defines the mechanism of oxo-active site formation in Cu-ZSM-5
Undated - Captain Robert H. Gray and others recommend Benjamin Knowles for promotion
https://digitalmaine.com/cw_me_4th_regiment_corr/1011/thumbnail.jp
The SCUBA Bright Quasar Survey (SBQS): 850micron observations of the z>4 sample
We present initial results of a new, systematic search for massive
star-formation in the host galaxies of the most luminous and probably most
massive z>=4 radio-quiet quasars (M(B) 10^13Lsun).
A total of 38 z>=4 radio-quiet quasars have been observed at the JCMT using
SCUBA at 850microns: 8 were detected (>3sigma) with S(850microns)>~ 10mJy
(submillimetre-loud). The new detections almost triple the number of optically
selected, submillimetre-loud z>~4 radio-quiet quasars known to date. We include
a detailed description of how our quasar sample is defined in terms of radio
and optical properties.
There is no strong evidence for trends in either detectability or 850microns
flux with absolute magnitude, M(B). We find that the weighted mean flux of the
undetected sources is 2.0 +/- 0.6mJy, consistent with an earlier estimate of
\~3mJy based on more sensitive observations of a sample z>~4 radio-quiet
quasars (McMahon et al., 1999). This corresponds to an inferred starformation
rate of \~1000Msun/yr, similar to Arp220. The typical starformation timescale
for the submillimetre-bright sources is ~1Gyr, 10 times longer than the typical
accretion-driven e-folding timescale of ~5x10^7 years. Our 850micron detection
of the z=4.4 quasar PSS J1048+4407 when analysed in conjunction with 1.2mm
single-dish and interferometric observations suggests that this source is
resolved on angular scales of 1-2" (6-12 kpc). In addition, we present a new
optical spectrum of this source, identifying it as a broad absorption line
(BAL) quasar. The new redshift is outside that covered in a recent CO line
search by Guilloteau et al., (1999), highlighting the need for accurate
redshifts for the obervation and interpretation of high-redshift line studies.Comment: 16 pages, 11 figures. Accepted by Monthly Notices of the Royal
Astronomical Societ
- …