91 research outputs found

    Pharmacological Challenge Models in Clinical Drug Developmental Programs

    Get PDF
    Early phase clinical research for drug development requires the investigation of safety, tolerability and efficacy of novel compounds. The latter is hampered by the absence of the disorder in healthy volunteers, which is why challenge models are often applied in order to demonstrate ‘proof of pharmacology.’ These challenge models can often be translatable from animal work and can inform the drug developer which dose, dosing regimen or application frequency should be selected prior to phase II studies in the target population. Furthermore, these challenge models represent well-controlled settings to perform activity screening of the compound. The following skin challenge models will be reviewed in this chapter: inflammation induced by Toll-like receptor agonists such as imiquimod, KLH challenge, UV-B irradiation and histamine

    The impact of CYP2C19 genotype on phenoconversion by concomitant medication

    Get PDF
    Introduction: Pharmacogenetics-informed drug prescribing is increasingly applied in clinical practice. Typically, drug metabolizing phenotypes are determined based on genetic test results, whereupon dosage or drugs are adjusted. Drug-drug-interactions (DDIs) caused by concomitant medication can however cause mismatches between predicted and observed phenotypes (phenoconversion). Here we investigated the impact of CYP2C19 genotype on the outcome of CYP2C19-dependent DDIs in human liver microsomes.Methods: Liver samples from 40 patients were included, and genotyped for CYP2C19*2, *3 and *17 variants. S-mephenytoin metabolism in microsomal fractions was used as proxy for CYP2C19 activity, and concordance between genotype-predicted and observed CYP2C19 phenotype was examined. Individual microsomes were subsequently co-exposed to fluvoxamine, voriconazole, omeprazole or pantoprazole to simulate DDIs.Results: Maximal CYP2C19 activity (Vmax) in genotype-predicted intermediate metabolizers (IMs; *1/*2 or *2/*17), rapid metabolizers (RMs; *1/*17) and ultrarapid metabolizers (UMs; *17/*17) was not different from Vmax of predicted normal metabolizers (NMs; *1/*1). Conversely, CYP2C19*2/*2 genotyped-donors exhibited Vmax rates ∌9% of NMs, confirming the genotype-predicted poor metabolizer (PM) phenotype. Categorizing CYP2C19 activity, we found a 40% concordance between genetically-predicted CYP2C19 phenotypes and measured phenotypes, indicating substantial phenoconversion. Eight patients (20%) exhibited CYP2C19 IM/PM phenotypes that were not predicted by their CYP2C19 genotype, of which six could be linked to the presence of diabetes or liver disease. In subsequent DDI experiments, CYP2C19 activity was inhibited by omeprazole (−37% ± 8%), voriconazole (−59% ± 4%) and fluvoxamine (−85% ± 2%), but not by pantoprazole (−2 ± 4%). The strength of CYP2C19 inhibitors remained unaffected by CYP2C19 genotype, as similar percental declines in CYP2C19 activity and comparable metabolism-dependent inhibitory constants (Kinact/KI) of omeprazole were observed between CYP2C19 genotypes. However, the consequences of CYP2C19 inhibitor-mediated phenoconversion were different between CYP2C19 genotypes. In example, voriconazole converted 50% of *1/*1 donors to a IM/PM phenotype, but only 14% of *1/*17 donors. Fluvoxamine converted all donors to phenotypic IMs/PMs, but *1/*17 (14%) were less likely to become PMs than *1/*1 (50%) or *1/*2 and *2/*17 (57%).Conclusion: This study suggests that the differential outcome of CYP2C19-mediated DDIs between genotypes are primarily dictated by basal CYP2C19 activity, that may in part be predicted by CYP2C19 genotype but likely also depends on disease-related factors

    Complement activation in inflammatory skin diseases

    Get PDF
    The complement system is a fundamental part of the innate immune system, playing a crucial role in host defense against various pathogens, such as bacteria, viruses, and fungi. Activation of complement results in production of several molecules mediating chemotaxis, opsonization, and mast cell degranulation, which can contribute to the elimination of pathogenic organisms and inflammation. Furthermore, the complement system also has regulating properties in inflammatory and immune responses. Complement activity in diseases is rather complex and may involve both aberrant expression of complement and genetic deficiencies of complement components or regulators. The skin represents an active immune organ with complex interactions between cellular components and various mediators. Complement involvement has been associated with several skin diseases, such as psoriasis, lupus erythematosus, cutaneous vasculitis, urticaria, and bullous dermatoses. Several triggers including auto-antibodies and micro-organisms can activate complement, while on the other hand complement deficiencies can contribute to impaired immune complex clearance, leading to disease. This review provides an overview of the role of complement in inflammatory skin diseases and discusses complement factors as potential new targets for therapeutic intervention

    Needle-free electronically-controlled jet injector treatment with bleomycin and lidocaine is effective and well-tolerated in patients with recalcitrant keloids

    Get PDF
    Objectives: The treatment of recalcitrant keloids is challenging. Although intralesional bleomycin using conventional needle injectors (CNI) is effective, it has important drawbacks, such as the need for repetitive and painful injections. Therefore, we aimed to evaluate the effectiveness, tolerability and patient satisfaction of intralesional bleomycin with lidocaine administered with a needle-free electronically-controlled pneumatic jet-injector (EPI) in recalcitrant keloids. Methods: This retrospective study included patients with recalcitrant keloids who had received three intralesional EPI-assisted treatments with bleomycin and lidocaine. Effectiveness was assessed using the Patient and Observer Scar Assessment Scale (POSAS) at baseline and four to six weeks after the third treatment. Additionally, treatment related pain scores numeric rating scale, adverse effects, patient satisfaction and Global Aesthetic Improvement Scale (GAIS) were assessed. Results: Fifteen patients with a total of &gt;148 recalcitrant keloids were included. The median total POSAS physician- and patient-scores were respectively 40 and 41 at baseline, and reduced with respectively 7 and 6-points at follow-up (p &lt; 0.001; p &lt; 0.001). The median pain scores during EPI-assisted injections were significantly lower compared to CNI-assistant injections, (2.5 vs. 7.0, respectively (p &lt; 0.001)). Adverse effects were mild. Overall, patients were “satisfied” or “very satisfied” with the treatments (14/15, 93.3%). The GAIS was “very improved” in one patient, “improved” in nine patients and “unaltered” in four patients. Conclusions: EPI-assisted treatment with bleomycin and lidocaine is an effective, well tolerated, patient-friendly alternative for CNI in patients with recalcitrant keloid scars. Randomized controlled trials are warranted to confirm our findings and improve the clinical management of recalcitrant keloids.</p

    Reflectance confocal microscopy as a non-invasive imaging tool in vulvar high-grade squamous intraepithelial lesions and lichen sclerosus:A descriptive morphological study in patients and healthy volunteers

    Get PDF
    Incorrect and delayed diagnosis of vulvar high-grade squamous intraepithelial neoplasia (vHSIL) and lichen sclerosus (LS) increases malignant progression risks and negatively impacts prognosis and quality of life. There is a need to improve diagnosis and monitoring. Reflectance confocal microscopy is a non-invasive imaging tool that visualizes skin structures at cellular resolution. The objectives were to explore feasibility and patient acceptability of vulvar RCM imaging and to identify RCM characteristics that are discriminative for vulvar HSIL and LS. This was a prospective, cross-sectional, observational clinical trial in patients with vHSIL and LS compared to healthy volunteers. RCM images and vulvar tissue samples were obtained. Five (5) patients with vHSIL, 10 patients with LS and 10 healthy volunteers were enrolled. In total, 100 image series of vulvar skin were obtained, including lesional and nonlesional sites. The RCM technique was considered acceptable for application by patients and healthy controls. Healthy vulvar skin was characterized by a homogenous, normal honeycomb patterned epidermis and a clear epidermal-dermal junctions. Vulvar HSIL and LS displayed an atypical honeycomb pattern of the epidermis and lymphocytic influx with presence of melanophages. Distinct features specifically observed in LS included the presence of hyalinised vessels and sclerotic areas in the dermis. RCM is a non-invasive imaging technique that is feasible and clinically acceptable to apply on vulvar skin, both in patients with premalignant lesions and healthy controls. Recognition and validation of disease-specific characteristics could make reflectance confocal microscopy a clinical tool to non-invasively aid identification of vulvar premalignancies.</p

    Guselkumab treatment normalizes the stratum corneum ceramide profile and alleviates barrier dysfunction in psoriasis:results of a randomized controlled trial

    Get PDF
    The epidermal inflammation associated with psoriasis drives skin barrier perturbations. The skin barrier is primarily located in stratum corneum (SC). Its function depends on the SC lipid matrix of which ceramides constitute important components. Changes in the ceramide profile directly correlate to barrier function. In this study, we characterized the dynamics of the barrier function and ceramide profile of psoriatic skin during anti-Interleukin-23 therapy with guselkumab. We conducted a double-blind, randomized controlled trial in which 26 mild-to-severe plaque psoriasis patients were randomization 3:1–100 mg guselkumab or placebo for 16 weeks and barrier dynamics monitored throughout. Barrier function was measured by trans-epidermal water loss measurements. Untargeted ceramide profiling was performed using liquid chromatography-mass spectrometry after SC was harvested using tape-stripping. The barrier function and ceramide profile of lesional skin normalized to that of controls during treatment with guselkumab, but not placebo. This resulted in significant differences compared to placebo at the end of the treatment. Changes in the lesional ceramide profile during treatment correlated with barrier function and target lesion severity. Nonlesional skin remained similar throughout treatment. Guselkumab therapy restored the skin barrier in psoriasis. Concomitant correlations between skin barrier function, the ceramide profile, and disease severity demonstrate their interdependency.</p

    Oral prednisolone suppresses skin inflammation in a healthy volunteer imiquimod challenge model

    Get PDF
    Imiquimod (IMQ) is a topical agent that induces local inflammation via the Toll-like receptor 7 pathway. Recently, an IMQ-driven skin inflammation model was developed in healthy volunteers for proof-of-pharmacology trials. The aim of this study was to profile the cellular, biochemical, and clinical effects of the marketed anti-inflammatory compound prednisolone in an IMQ model. This randomized, double-blind, placebo-controlled study was conducted in 24 healthy volunteers. Oral prednisolone (0.25 mg/kg/dose) or placebo (1:1) was administered twice daily for 6 consecutive days. Two days after treatment initiation with prednisolone or placebo, 5 mg imiquimod (IMQ) once daily for two following days was applied under occlusion on the tape-stripped skin of the back for 48 h in healthy volunteers. Non-invasive (imaging and biophysical) and invasive (skin punch biopsies and blister induction) assessments were performed, as well as IMQ ex vivo stimulation of whole blood. Prednisolone reduced blood perfusion and skin erythema following 48 h of IMQ application (95% CI [−26.4%, −4.3%], p = 0.0111 and 95% CI [−7.96, −2.13], p = 0.0016). Oral prednisolone suppressed the IMQ-elevated total cell count (95% CI [−79.7%, −16.3%], p = 0.0165), NK and dendritic cells (95% CI [−68.7%, −5.2%], p = 0.0333, 95% CI [−76.9%, −13.9%], p = 0.0184), and classical monocytes (95% CI [−76.7%, −26.6%], p = 0.0043) in blister fluid. Notably, TNF, IL-6, IL-8, and Mx-A responses in blister exudate were also reduced by prednisolone compared to placebo. Oral prednisolone suppresses IMQ-induced skin inflammation, which underlines the value of this cutaneous challenge model in clinical pharmacology studies of novel anti-inflammatory compounds. In these studies, prednisolone can be used as a benchmark

    Extending the IMQ Model:Deep Characterization of the Human TLR7 Response for Early Drug Development

    Get PDF
    Imiquimod (IMQ; brand name AldaraÂź) is a registered topical agent that has been proven to induce local inflammation via the Toll-like receptor (TLR)7 pathway. The purpose of this study was to characterize TLR7-mediated inflammation following 7 days (168 h) of topical IMQ exposure in healthy volunteers, and to compare the effects of short exposure (48 h-72 h) with prolonged exposure (120 h-168 h). IMQ (100mg) was applied under occlusion to 5 different tape-stripped treatment sites on the back of 10 healthy participants for a maximum of 7 consecutive days. Erythema and skin perfusion were measured daily up to 168h. Biopsies for immunohistochemical staining and RNA sequencing were collected at 0h, 48h, 72h, 120h and 168h post IMQ application. IMQ triggered an inflammatory response starting at 48h after application, including erythema and perfusion of the skin. At the transcriptomic level, IMQ induced TLR7 signalling, IRF involvement and activation of TNF signalling via NF-ÎșB. Furthermore, an enhanced inflammatory response at the cellular level was observed after prolonged IMQ exposure, with cellular infiltration of dendritic cells, macrophages and T cells which was also corroborated by transcriptomic profiles. No difference was found in the erythema and perfusion response after 168h of IMQ exposure compared to 72h. Prolonged IMQ exposure revealed enhanced cellular responses and additional pathways with modulated activity compared to short exposure and can therefore be of interest as a model for investigational compounds targeting innate and adaptive immune responses.</p
    • 

    corecore