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Introduction: Pharmacogenetics-informed drug prescribing is increasingly
applied in clinical practice. Typically, drug metabolizing phenotypes are
determined based on genetic test results, whereupon dosage or drugs are
adjusted. Drug-drug-interactions (DDIs) caused by concomitant medication
can however cause mismatches between predicted and observed phenotypes
(phenoconversion). Here we investigated the impact ofCYP2C19 genotype on the
outcome of CYP2C19-dependent DDIs in human liver microsomes.

Methods: Liver samples from 40 patients were included, and genotyped for
CYP2C19*2, *3 and *17 variants. S-mephenytoin metabolism in microsomal
fractions was used as proxy for CYP2C19 activity, and concordance between
genotype-predicted and observed CYP2C19 phenotype was examined. Individual
microsomes were subsequently co-exposed to fluvoxamine, voriconazole,
omeprazole or pantoprazole to simulate DDIs.

Results: Maximal CYP2C19 activity (Vmax) in genotype-predicted intermediate
metabolizers (IMs; *1/*2 or *2/*17), rapid metabolizers (RMs; *1/*17) and
ultrarapid metabolizers (UMs; *17/*17) was not different from Vmax of predicted
normal metabolizers (NMs; *1/*1). Conversely, CYP2C19*2/*2 genotyped-donors
exhibited Vmax rates ~9% of NMs, confirming the genotype-predicted poor
metabolizer (PM) phenotype. Categorizing CYP2C19 activity, we found a 40%
concordance between genetically-predicted CYP2C19 phenotypes and
measured phenotypes, indicating substantial phenoconversion. Eight patients
(20%) exhibited CYP2C19 IM/PM phenotypes that were not predicted by their
CYP2C19 genotype, of which six could be linked to the presence of diabetes or
liver disease. In subsequent DDI experiments, CYP2C19 activity was inhibited by
omeprazole (−37% ± 8%), voriconazole (−59%± 4%) and fluvoxamine (−85%± 2%),
but not by pantoprazole (−2 ± 4%). The strength of CYP2C19 inhibitors remained
unaffected by CYP2C19 genotype, as similar percental declines in
CYP2C19 activity and comparable metabolism-dependent inhibitory constants
(Kinact/KI) of omeprazole were observed between CYP2C19 genotypes. However,
the consequences of CYP2C19 inhibitor-mediated phenoconversion were
different between CYP2C19 genotypes. In example, voriconazole converted
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50% of *1/*1 donors to a IM/PM phenotype, but only 14% of *1/*17 donors.
Fluvoxamine converted all donors to phenotypic IMs/PMs, but *1/*17 (14%) were
less likely to become PMs than *1/*1 (50%) or *1/*2 and *2/*17 (57%).

Conclusion: This study suggests that the differential outcome of CYP2C19-
mediated DDIs between genotypes are primarily dictated by basal
CYP2C19 activity, that may in part be predicted by CYP2C19 genotype but likely
also depends on disease-related factors.

KEYWORDS

phenoconversion, pharmacogenetics, drug-drug interactions, drug-drug-gene
interactions, drug metabolism, CYP2C19

Introduction

Pharmacogenetics aims to increase patient safety and drug
efficacy by tailoring drug treatment to an individual’s genetic
profile. Based on this genetic profile, patients can be categorized
into drug metabolizing phenotypes which subsequently can be
used for selecting the right drug and optimal dose. Therapeutic
guidance for actionable drug-gene interactions (DGIs) have been
developed by the Clinical Pharmacogenetics Implementation
Consortium (CPIC) and the Dutch Pharmacogenetic Work
Group (DPWG) for over 75 drugs (Swen et al., 2011; CPIC,
2023). However, a common problem encountered using drug
metabolizing phenotypes is that a patient’s genetically-predicted
phenotype can deviate from its actual metabolizer status—a
phenomenon called phenoconversion (Shah and Smith, 2015;
Klomp et al., 2020).

Non-genetic factors that skew this genotype-based prediction
include inflammatory or liver diseases as well as drug-drug
interactions (DDIs) caused by concomitant medication use (Shah
and Smith, 2015). The individual impact of genetic polymorphisms
and DDIs on pharmacokinetics of drugs has been vastly
investigated. However, the interplay between pharmacogenetics
and DDIs that may result in drug-drug-gene interactions
(DDGIs) is not yet taken into account in clinical practice.
Importantly, DDGIs account for up to 20% of total major or
substantial drug interactions and are thus a clinical concern
(Verbeurgt et al., 2014; Hocum et al., 2016).

Numerous studies demonstrate that a patient’s genotype
determines the clinical relevance of a DDGI (Bahar et al., 2017).
For example, Storelli et al. showed that the presence of one
nonfunctional CYP2D6 allele increases the risk of
phenoconversion to a poor metabolizer (PM) status in the
presence of a CYP2D6 inhibitor (Storelli et al., 2018). This
suggests that the occurrence of DDIs in patients with reduced
enzyme functionality at baseline creates a higher susceptibility for
phenoconversion towards an actionable genotype. In contrast, PMs
are not considered prone to DDIs involving the same enzyme, as
these individuals already exhibit null enzymatic activity at baseline.
Considering the importance of DDI-induced phenoconversion,
CPIC guidelines suggest that the concomitant use of
CYP2D6 inhibitors should be taken into account for calculating
the genotype-based activity score (Crews et al., 2021).

The CYP2C19 gene is highly polymorphic and responsible for
metabolism of frequently prescribed proton-pump inhibitors (PPIs)
and other commonly used drugs including clopidogrel and

antidepressants. A large proportion of CYP2C19-related drugs
acts as CYP2C19 inhibitors, for which concomitant use may
result in DDIs. As a consequence, concomitant medication use
may commonly lead to phenoconversion of CYP2C19-mediated
metabolism. For instance, when considering phenoconversion
caused by DDGIs, the CYP2C19 PM phenotype was found 5-fold
more frequently than expected based on genotype alone in a group
of 2905 patients (Mostafa et al., 2019). Consequently, the predicted
phenotype based on genotype solely could be erroneous when
concomitant use of CYP2C19 inhibitors is not contemplated while
predicting CYP2C19 phenotype. However, phenoconversion rates for
CYP2C19-mediated drug metabolism following treatment with an
inhibitor have not been determined due to sparse availability of data
to help predict the drug metabolizing phenotype after inhibitor use.

To ultimately provide concise DDGI recommendations that
combine knowledge on pharmacogenetics and concomitant
medication use, it is important to gain a quantitative
understanding of the phenoconversion that occurs after co-
administration of an inhibitor of the same enzyme. To this
end, we aimed to quantify to what extent CYP2C19
polymorphisms can impact the outcome of a DDI with
various CYP2C19 inhibitors in human liver microsomes.
Firstly, we set out to assess the genotype-phenotype
discordance in this cohort and link this to known
phenoconversion risk factors. We then investigated whether
the intrinsic inhibitory activity of the most prescribed PPI and
CYP2C19 inhibitor omeprazole was affected by the CYP2C19
genotype. Lastly, we quantified phenoconversion after co-
administration of various clinically relevant CYP2C19 inhibitors.

Materials and methods

Human liver samples

Macroscopically healthy liver samples from 40 patients with
colorectal cancer derived liver metastasis were retrieved from the
gastroenterology biobank at the Leiden University Medical Center
(LUMC, Leiden, Netherlands). Fresh tissue samples were obtained
directly after surgery, and macroscopically healthy liver tissues
distant from the metastasis (at tumor free resection margins)
were collected, snap frozen end stored at −80°C until use. The
collection and use of these samples was approved by the Medical
Ethics Committee of Leiden Den Haag Delft, Netherlands through
protocol B21.072 entitled “The modulating potential of
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CYP450 genetic variability on phenoconversion by concomitant
medication.”

Genotyping

Genomic DNA from the human liver samples was extracted using
the NucleoSpin Tissue mini kit from Macherey-Nagel (Hoerdt,
France). The CYP2C19 variant alleles CYP2C19*2 (NC_000010.11:
g.94781859G>A), CYP2C19*3 (NC_000010.11: g.94780653G>A), and
CYP2C19*17 (NC_000010.11: g.94761900C>T) were analyzed using
pre-designed TaqMan-based real-time polymerase chain reaction
(PCR) assays, with probes obtained from ThermoFisher. The
Quantstudio and ViiA7 systems were employed for analysis. All
genotyping was conducted following standard protocols used in
routine diagnostics, in an ISO-15189 certified laboratory. The
variants were checked for Hardy-Weinberg equilibrium. Predicted
phenotypes were assigned using conventional methods based on
translation tables from CPIC and DPWG (PharmGKB, 2023).

RNA preparation and real time-qPCR

Liver RNA was isolated using the RNeasy Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions.
Concentration and purity of RNA was subsequently measured
using a NanoDrop 3300 (Thermo Scientific, Wilmington, US).
RNA was reverse-transcribed into cDNA using a RevertAid H
Minus First Strand cDNA Synthesis kit (Thermo Scientific,
Wilmington, US) according to the instructions provided. RT-
qPCR analysis was performed using a QuantStudio™ 6 Flex
System.

All PCR primers were designed in-house and subsequently
checked for amplification efficiency through a serial dilution of
cDNA where 90%–110% efficiency was desired (Supplementary
Table S1). A CYP2C19 primer targeting exon 9 was designed to
amplify total CYP2C19 mRNA. As this primer does not distinguish
between mRNA encoding for functional or non-functional
CYP2C19 protein, an additional exon-spanning primer pair was
designed that could predominantly detect functional mRNA. This
was achieved through a reverse primer binding within the first
40 basepairs of exon 5, as this region is deleted in
CYP2C19*2 carriers and the most commonly observed variant
linked to the formation of non-functional CYP2C19 protein
(Chaudhry et al., 2015).

Relative mRNA levels were calculated using the comparative Ct
method and normalized to the geometric mean of the housekeeping
genes Ribosomal Protein Lateral Stalk Subunit P0 (RPLP0) and RNA
Polymerase II, I and III Subunit L (POLR2L), which were
determined as the most stable endogenous controls through
GNOrm software analysis (Vandesompele et al., 2002).

Liver microsomal preparations

Human liver microsomes were prepared from obtained liver
resections with the aid of a microsome isolation kit from Sigma-
Aldrich (St. Louis, MO, United States). Total protein

concentrations were determined in triplicate with the BCA
protein assay (Pierce, Rockford, IL, United States). Aliquots of
the final microsomal suspension were stored at −80°C. The
microsomal protein per gram of liver (MPPGL, mg/g) was
calculated by dividing the microsomal protein yield by the
liver weight input and was on average 7.4 ± 2.0 mg/g in this
cohort. Individual microsomal preparations were used for all
experiments except for the experiment in which inhibitory
parameters of omeprazole were determined. In these
omeprazole-related experiments, genotype-matched microsome
pools where generated by pooling an equal amount of
microsomal protein from either 8 (*1/*17), 16 (*1/*1) or 10
(*1/*2 or *2/*17) donors.

CYP2C19 activity assays in microsomes

Kinetic analysis of CYP2C19 dependent
S-mephenytoin hydroxylation

Various concentrations of S-mephenytoin (1–400 µM) were
incubated with individual genotyped human liver microsomes
(final protein concentration: 0.03 mg/mL) in 200 µL incubation
mixtures containing 0.05 mM potassium phosphate buffer
(pH 7.4) with MgCl2 (3 mM), EDTA (1 mM), NADP (1 mM),
glucose-6-phosphate (5 mM) and glucose-6-phosphate
dehydrogenase (1 unit/mL). Incubations were performed in
duplicate in Protein LoBind® Tubes (Eppendorf, Hamburg,
Germany). After 30 min, reactions were terminated by the
addition of equal volumes of ice-cold acetonitrile containing the
internal standard 4′-hydroxymephenytoin-d3 (20 ng/mL). Insoluble
protein was precipitated by centrifugation (10,000 × g for 5 min at
4°C), and supernatant was diluted 2.5 times in LC-MS quality water
before 4′-hydroxymephenytoin concentration measurements. A
validated liquid chromatography-tandem mass spectrometry (LC-
MS/MS) assay was used to quantify 4′-hydroxymephenytoin (see
“Quantification of 4′-hydroxymephenytoin by LC-MS/MS,
Supplementary Material”).

Determination of kinetic parameters
Maximal velocity of S-mephenytoin 4′-hydroxylation (Vmax)

and affinity (Km) values were obtained for each individual donor by
fitting individual data to the Michaelis-Menten equation:V � Vmax[S]

Km[S]
in Graphpad Prism 9 (Graphpad Software, San Diego, CA), where V
represents the initial metabolism rate of S-mephenytoin (pmol/min/
mg protein) and [S] represents the S-mephenytoin substrate
concentration (µM). No Michaelis-Menten curve fitting was done
for donors with non-saturable product formation kinetics. For these
donors, Vmax values were estimated by means of simple linear
regression. Km values were only determined when S-mephenytoin
4′-hydroxylation followed Michaelis-Menten kinetics. To analyze
the kinetic parameters for S-mephenytoin 4′-hydroxylation across
donors with the same genotype, non-linear least-squares analysis in
Graphpad Prism was done without restrictions.

Determination of basal phenoconversion in cohort
CYP2C19 genotypes were first used to predict the drug

metabolizing activity of donors classified into the phenotype
categories: ultrarapid metabolizer (UM), rapid metabolizer (RM),
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normal metabolizer (NM), intermediate metabolizer (IM) and poor
metabolizer (PM), according to CPIC guidelines (PharmGKB,
2023). Secondly, cut-off values for the metabolic activity of
phenotype groups were defined based on the study by Kiss et al.,
in which S-mephenytoin hydroxylation at a saturating substrate
concentration was determined in genotyped liver microsomes of
114 donors (Kiss et al., 2018). Since Kiss et al. did not define a RM
group, boundaries between NMs and RMs were determined using
the same method and thus based on the median S-mephenytoin
hydroxylation activity in 24 donors. Hence, cut-off values between
the phenotypic groups PM/IMs, IMs/NMs, NMs/RMs and RMs/
UMs were set in this study at 8, 23, 58, and 75 pmol/min/mg protein
respectively.

The observed maximal S-mephenytoin hydroxylation activity in
individual donors was then compared to the expected activity for
these donors based on their genotype-predicted phenotype.
Concordance/non-concordance between measured and genotype-
predicted hydroxylation activity was determined for every individual
donor to indicate basal phenoconversion.

Determination of inhibitor-induced
phenoconversion
Inhibitor concentrations

To simulate the outcome of DDIs for differentCYP2C19 genotypes,
individual microsomal fractions were co-exposed to clinically relevant
concentrations of the CYP2C19 inhibitors fluvoxamine, voriconazole,
omeprazole or pantoprazole. Concentrations were based on the
calculated unbound maximum hepatic inlet concentration in plasma
(Iin,max,u), which incorporates both the drug entering the liver from the
systemic circulation as well as the drug entering the liver from the gut
via the hepatic portal vein following the equation: (Parkinson, 2019):

Iin,max,u � Fup Plasma I max +
DosepFapFgpKa

Qh( )
Rb

⎛⎝ ⎞⎠
where Fup is the fraction unbound in plasma, Plasma Imax

represents the total systemic Cmax in plasma, Dose is the oral
dose, Fa*Fg represent the fraction of drug absorbed from the
gastrointestinal tract into the hepatic portal blood, Ka is the rate
of absorption of drug from the intestine, Qh is the hepatic blood
flow and Rb the drug concentration in blood to the drug
concentration in plasma.

Input parameters were retrieved from literature and are described
in Table 1, as well as the final calculated Iin,max,u used in this assay. The
calculation of the Iin,max,u was based on the clinically standard starting
dose for all inhibitors. The Qh was assumed to be 1,62 L/min (as used
by all regulatory agencies). Input plasma Imax values are detailed in the
Supplementary Material under “Calculating the unbound maximum
hepatic inlet concentration”.

Incubations with inhibitors
From the 40 donors, 10 donors had a maximum rate of

formation lower than 10 pmol/min/mg protein in the absence of
inhibitors, which corresponds to a PM phenotype. These donors
were therefore excluded in subsequent experiments in which the
consequences of the different CYP2C19 inhibitors were determined.
To assess the direct inhibition of CYP2C19 by fluvoxamine,
voriconazole and pantoprazole for the 30 individual donors, the
selected concentrations of inhibitors were incubated with 30 µM of
S-mephenytoin (frequently reported Km value), microsomes
(0.03 mg/mL) and the NADPH generating system described
above in 0.05 mM phosphate buffer (pH = 7.4) for 7 min.
Incubations without inhibitor served as control. Omeprazole is a
metabolism-dependent inhibitor (MDI) of CYP2C19, meaning that
the formation of omeprazole metabolites increases the inhibitory
potency of omeprazole over time (Ogilvie et al., 2011). To simulate
the MDI of CYP2C19 by omeprazole, omeprazole was pre-
incubated at 37°C with NADPH-fortified microsomes for 40 min.
After the pre-incubation, S-mephenytoin (30 μM, final) was
supplemented and the incubation time was continued for 7 min
to measure residual CYP2C19 activity. Incubations without
omeprazole but with 40 min pre-incubation served as control.

Cut-off values phenotype groups
Published thresholds for defining CYP2C19 phenotype categories

are only available at formation rates determined withmaximal substrate
stimulation (Kiss et al., 2018). In order to investigate DDI-induced
phenoconversion, the rate of formation for individual donors was
determined at S-mephenytoin concentration of 30 µM. A calculated
scaling factor (activity at 400 µM/activity at 30 µM) was used to
transform the phenotype cut-off thresholds used at maximum
substate formation. Accordingly, thresholds between the phenotypic
groups PM/IMs, IMs/NMs, NMs/RMs and RMs/UMs were 5, 14,
40 and 53 pmol/min/mg protein.

TABLE 1 Input parameters for calculating the unbound maximum hepatic inlet concentration in plasma (Iin,max,u). In the absence of experimentally determined
values, the Ka was assumed to be 0.1 min−1, and the Fa*Fg and Rb were assumed to be 1 (Parkinson, 2019).

Dose
(mg)

Dose
(µmol)

Mean plasma Imax

(µM)*
Ka

(min−1)
References

Ka
Rb References

Rb
Fraction unbound in plasma

(Fup)**
Iin,max,u

(µM)

Fluvoxamine 100 314.0 0.3 0.020 Iga (2015) 1.0 0.25 1.0

Omeprazole 40 115.8 3.3 0.100 Ogilvie et al. (2011) 0.6 Ogilvie et al.
(2011)

0.05 0.8

Voriconazole 200 572.6 7.3 0.012 Shi et al. (2019) 2.1 Grensemann
et al. (2021)

0.42 3.9

Pantoprazole 40 104.3 6.5 0.018 Gawroñska-Szklarz
et al. (2012)

1.0 0.02 0.2

*References for mean plasma Imax levels can be found in the Supplementary Table S3.

**Fraction unbound was derived from the drug prescribing information.
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KI and Kinact determinations for omeprazole
KI (inhibitor concentration that supports half the maximal rate

of inactivation) and Kinact (maximal rate of enzyme inactivation)
parameters were determined as described by Ogilvie et al. (Ogilvie et
al., 2011), using the non-dilution method (Parkinson et al., 2011). In
order to determine KI and Kinact values for the inactivation of
CYP2C19 by omeprazole, genotype-pooled microsomes were pre-
incubated with various concentrations of omeprazole (1–30 µM) for
0–30 min at 37°C. After pre-incubation, S-mephenytoin (30 µM)
was added and residual CYP2C19 activity was determined as
described under “Kinetic analysis of CYP2C19 dependent
S-mephenytoin hydroxylation.” KI and Kinact parameters were
determined using non-linear regression in Graphpad Prism 9.

Chemicals and reagents

S-mephenytoin, 4′-hydroxymephenytoin, 4′-hydroxymephenytoin-
d3, voriconazole and omeprazole were purchased from LGC (Wesel,
Germany). Fluvoxamine maleate was purchased from Tocris (Bristol,
United Kingdom). Pantoprazole sodium, nicotinamide adenine
dinucleotide phosphate (NADP), glucose-6-phosphate and glucose-6-
phosphate dehydrogenase from baker’s yeast (S. cerevisiae) were
purchased from Sigma-Aldrich. Acetonitrile, methanol, water and
formic acid of LC-MS grade were obtained from Merk (Darmstadt,
Germany).

Statistical analysis

For data which showed no normal distribution based on the
Shapiro-Wilk test of normality and QQ-plots, the Kruskal–Wallis
test was performed followed by a Dunnett’s multiple comparison
test to compare genotype-groups. For normally distributed data, the
one-way ANOVA followed by a Dunnett’s multiple comparison test
was used. Correlation analysis were performed with the non-
parametric Spearman test. A p-value of <0.05 was considered to
be statistically significant.

Results

Patient characteristics

A total of 40 liver samples from 15 female, 23 male and 2 donors
of unknown sex were included in the study. The patient
characteristics are summarized in Table 2. Complete information
on age, body mass index (BMI), comorbidities and concomitant
medication use at the time of surgery was not always available from
the medical records. Of the donors, 12.5% suffered from an
additional liver disease, 17.5% from a chronic inflammatory
disease, 12.5% patients had diabetes mellitus and 5% of patients
used CYP2C19 inhibitors before surgery.

Genotyping

Liver donors were genotyped for CYP2C19 variants *1, *2, *3,
and *17. All allele variants were consistent with Hardy-Weinberg
equilibrium (*2: x2 = 3.2, p = 0.07, *17: x2 = 0.4, p = 0.54, *1: x2 = 2.05,
p = 0.15). CYP2C19*3 was not detected in the study samples.
CYP2C19 genotype frequencies and predicted phenotypes are
summarized in Table 3. Expected genotype frequencies were in
concordance with reported frequencies in the PharmGKB database
for Europeans (PharmGKB, 2023).

Impact of genotype on CYP2C19-mediated
metabolism of S-mephenytoin

CYP2C19 activity was measured in all genotyped liver
microsomes using S-mephenytoin as a probe substrate.
Formation of 4′-hydroxymephenytoin was saturable for all

TABLE 2 Population characteristics of the cohort.

Mean (N) Range

Age (years) 62.6 (38) 42–87

BMI (kg/m2) 26.9 (28) 18–37

N %

Female 15 37.5

Male 23 57.5

Unknown 2 5.0

Liver disease

Cirrhosis 1 2.5

Cholangitis 2 5.0

Choledocholithiasis 1 2.5

Liver abscess 1 2.5

None 30 75.0

Unknown 5 12.5

Inflammatory disease

Skin 2 5.0

Lung 4 10.0

Joins 1 2.5

None 29 72.5

Unknown 5 12.5

Diabetes mellitus

Present 5 12.5

Not present 30 75.0

Unknown 5 12.5

Drug use before operation

CYP2C19 inhibitor 2 5.0

CYP2C19 inducer 0 0.0

None 20 50.0

Unknown 18 45.0
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investigated genotypes, with the exception of the *2/*2 genotype
(Figure 1A). Michaelis-Menten parameters were obtained from the
kinetic analysis of individual donors (Table 3). Mean maximal
velocity rates (Vmax) were comparable to S-mephenytoin 4′-
hydroxylation activities in microsomes published by Shirasaka
et al. (Shirasaka et al., 2016). Compared with the CYP2C19*1/
*1 genotype, donors with the CYP2C19*2/*2 genotype exhibited
decreased Vmax values (~9% of *1/*1, p = 0.04). Vmax values of all
other genotypes did not differ from that of *1/*1. CYP2C19 substrate
affinities (Km) were, as expected, not different between genotype
groups. Importantly, Km values were comparable to published
microsomal affinity values of S-mephenytoin for CYP2C19
(Shirasaka et al., 2016).

To investigate basal phenoconversion, genotype-predicted drug
metabolizing phenotypes (PM, IM, NM, RM or UM) were compared
to the observed activities of individual donors (Figure 1B). All
genetically-predicted PMs indeed showed a PM phenotype,
indicative of a complete loss of functional CYP2C19 activity.
However, the 4′-hydroxylation activity of six other donors also
corresponded to a PM phenotype. In contrast, five donors showed
an UM phenotype despite not having two increased function alleles
(*17). Altogether, a relatively low concordance (40%) was observed
between measured CYP2C19 metabolizing phenotype for the
donors within this study and literature based genotype-predicted
phenotypes, suggesting the occurrence of phenoconversion in
absence of concomitant medication use.

Correlation between CYP2C19 mRNA levels
and metabolic activity

CYP2C19 enzyme activity is both affected by genetic
polymorphisms as well as disease-related factors including
inflammation and chronic liver disease (Zanger and Schwab,
2013). We therefore set out to assess the predictive relationship
of CYP2C19mRNA expression levels for CYP2C19 activity, and link
demographic variables from this cohort to metabolic activity to find

explanations for the observed discrepancy between genotype-
predicted activity and measured metabolizing phenotype.

First, total CYP2C19 mRNA transcriptional levels for the
different genotypes were examined. The different genotype
groups did not exhibit differences in total CYP2C19 mRNA
expression levels (Figure 2A). One significant limitation of
mRNA expression studies is that the functional consequences of
the mRNA produced are often not considered. In the case of
CYP2C19, the presence of the CYP2C19*2 allele is linked to
splicing defects in mRNA production and the formation of
inactive protein (Chaudhry et al., 2015). To address this
limitation, we utilized a primer-pair that primarily detects
functional mRNA rather than CYP2C19*2 mRNA. Indeed,
functional CYP2C19 expression levels were dramatically reduced
in the *2/*2 genotype as compared to the *1/*1 genotype (p = 0.01,
Figure 2B). Mean functional CYP2C19 expression levels followed
the rank order of *17/*17, *1/*17, *1/*1, *1/*2, *2/*17, and was
lowest for *2/*2, as would be expected based on allele functionality.

Next, mRNA expression levels were correlated to measured
CYP2C19 metabolizing activities to investigate a potential
predictive relationship. Total CYP2C19 expression levels did not
correlate with CYP2C19 activity (r = 0.25, p = 0.12, Figure 2C). In
contrast, the activity level of CYP2C19 was positively correlated with
functional CYP2C19 mRNA levels (r = 0.40, p = 0.01, Figure 2D),
suggesting transcriptional regulation may in part explain the
differences in enzyme activity between the genotype groups. It
should however be noted that this increased positive correlation
as compared to total mRNA levels was mainly driven by PM donors.

Influence of disease-related factors and
concomitant medication on
CYP2C19 metabolic activity

Liver disease is a non-genetic factor shown to alter
CYP450 activity (Ohnishi et al., 2005; Duthaler et al., 2022).
PNPLA3 is an established genetic marker of progressive liver

TABLE 3 Genotype distribution and frequency in this study population and corresponding mean kinetic parameters (Vmax and Km) for CYP2C19-catalyzed
S-mephenytoin metabolism per CYP2C19 genotype. Kinetic parameters were obtained from the data presented in Figure 1A.*p < 0.05, significantly different from
kinetic parameter in CYP2C19*1/*1 donors.

CYP2C19 genotype Observed frequency
N (%)

Expected frequency#

(%)
Genotype-predicted

phenotype&
Vmax

(pmol/min/mg protein)
Km
(µM)

Mean ± SD Mean ± SD

*1/*1 16 (40.0) 39.1 NM 50.2 ± 36.5 18.4 ± 4.8

*1/*2 7 (17.5) 18.3 IM 32.3 ± 28.1 21.2 ± 5.5

*2/*17 3 (7.5) 6.3 IM 42.2 ± 37.5 23.0 ± 7.4

*2/*2 4 (10.0) 2.2 PM 4.3 ± 2.9* -

*1/*17 8 (20.0) 26.7 RM 60.4 ± 32.2 18.8 ± 3.9

*17/*17 2 (5.0) 4.6 UM 28.1 ± 6.1 33.4 ± 8.4

total 40 (100)

#Based on genotype frequencies for Europeans in PharmGKB.
&Translation based on PharmGKB database (PharmGKB, 2023). NM, normal metabolizer; IM, intermediate metabolizer; PM, poor metabolizer; RM, rapid metabolizer; UM, ultrarapid

metabolizer.
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disease (Dubuquoy et al., 2013), but PNPLA3 mRNA expression did
not correlate to CYP2C19 activity in this cohort (r = 0.07, p = 0.68,
Figure 2E). Among the five patients with confirmed liver disease, the
presence of cirrhosis, cholangitis or liver abscess was associated with
lower CYP2C19 activity compared to what’s expected based on
genotype. Importantly, this included two genetically-predicted RMs
that phenoconverted to an IM or PM phenotype, and one *1/
*1 donor that converted to a PM phenotype. Diabetes mellitus is
recently identified as a modifying factor of CYP2C19 activity, with
patients displaying mean reduced activity of ~50% (Gravel et al.,
2019). In our cohort, 5 patients suffered from diabetes mellitus of
which one was genetically-predicted PM. For the other four donors,
three of them showed phenoconversion to a PM phenotype.
Inflammation is another non-genetic factors altering

CYP2C19 activity (de Jong et al., 2020). Overall, there was no
correlation between mRNA levels of CRP, a measure of
inflammation, and CYP2C19 activity (r = −0.10, p = 0.53,
Figure 2F). In line, although 17.5% of patients in this cohort
suffered from a (systemic) inflammatory disease, not all of them
displayed phenoconversion.

The use of concurrent medication can also lead to
phenoconversion, as this can result in induced expression or
inhibition of drug metabolizing enzymes (Klomp et al., 2020). Prior
to surgery, two patients were on CYP2C19 inhibitor therapy. No
phenoconversion was evident for the patient on pantoprazole, in
line with its classification as a weak inhibitor. The second patient
exhibited a PM phenotype despite their *1/*17 genotype. The
underlying cause of this phenoconversion could be dual, as this

FIGURE 1
Kinetic analysis of CYP2C19-mediated S-mephenytoin metabolism in genotype-matched donors. (A) Mean velocities +SEM at each substrate
concentration are shown. Between genotype-group comparisons of maximal 4′-hydroxymephenytoin formation was done using a Kruskal–Wallis test
with a Dunn’s multiple comparisons test to *1/*1. *p < 0.05. (B) Maximal measured CYP2C19 activity (symbols) versus genetically-predicted maximal
CYP2C19 activities from literature (dotted lines) in subjects with different CYP2C19 genotypes. Cut-off values for CYP2C19 phenotype groups are
based on Kiss et al. (Kiss et al., 2018). Means per genotype +SEM are shown.
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patient was using esomeprazole before surgery and suffered from the
comorbidity cholangitis. It is crucial to note that unlike CYP induction,
the inhibition in liver microsomes caused by clinically administered

CYP2C19 inhibitors is less probable to persist due to the necessary
washing steps in the liver microsome isolation and the reversible nature
of CYP inhibition.

FIGURE 2
Gene expression analysis in the cohort to investigate the observed discrepancy between genotype-predicted CYP2C19 activity and measured
CYP2C19 activity. (A) Total CYP2C19mRNA expression stratified per genotype. Individual values +means per genotype are presented. (B) Levels of mRNA
that lead to functional CYP2C19 protein stratified per genotype. Individual values +means are presented. (C) Correlation between CYP2C19 mRNA and
enzyme activity for total mRNA levels and (D) levels of mRNA that lead to functional CYP2C19 protein. (E) Correlation between CYP2C19 enzyme
activity and known regulators of CYP2C19 activity: liver disease (PNPLA3) and (F) inflammation (CRP). Blue circles represent *17/*17 donors, red squares
represent *1/*17 donors, black triangles represent *1/*1 donors, purple triangles represent *1/*2 donors, green circles represent *2/*17 donors and
orange diamond represent *2/*2 donors. Spearman correlation (r) was calculated using GraphPad Prism 9.
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Genotype-dependent impact of drug-drug
interactions

The main objective of this study was to assess the occurrence of
phenoconversion in various CYP2C19 genotype groups following
administration of either a strong (fluvoxamine), moderate
(omeprazole or voriconazole) or weak (pantoprazole) inhibitor of
CYP2C19, and thereby quantify to which phenotype they switch. On
a group-level, CYP2C19 activity was inhibited (p < 0.0001) by
omeprazole (−37% ± 8%), voriconazole (−59% ± 4%) and
fluvoxamine (−85% ± 2%), but not by pantoprazole (−2 ± 4%)
(Figure 3A). This percental decrease in activity was independent of
CYP2C19 genotype (Supplementary Figure S2), indicating that
inhibitor strength is not affected by CYP2C19 genotype.

Omeprazole is a metabolism-dependent inhibitor (MDI) of
CYP2C19, meaning that biotransformation of the substrate into its
active metabolites contributes to the inhibitory potency of the drug.
Since genotype impacts the degree of metabolite formation, we
investigated whether the inhibitory potency of omeprazole would be
affected by CYP2C19 genotype. The inhibitory constants Kinact (the first
order rate constant of CYP2C19 inactivation) and KI (concentration of
omeprazole supporting half-maximal rate of CYP2C19 inactivation)
were determined in genotype-matched donor pools (Figure 3B).
Genotype-matched donor pools were either a pool of donors with
two wild type alleles (*1), one non-functional allele (*2) or one gain-of-
function allele (*17). *17/*17 donors were excluded due to their already
low activities at baseline (basal phenoconversion). For the various
genotypes, omeprazole inactivated CYP2C19 with similar KI values

of either 3.01 ± 0.83 µM for RMs, 4.47 ± 1.8 for NMs and 8.9 ±
12.38 µM for IMs. The mean maximal rate of inactivation (Kinact) was
0.028 ± 0.002 min−1 for RMs, 0.031 ± 0.004 min−1 for NMs and
0.026 ± 0.01 min−1 for IMs, and not different between the genotype
groups. Similar inactivation rate constants for CYP2C19 for omeprazole
were reported by Shirasaka et al. in a microsome pool of 7 non-
genotyped donors (Shirasaka et al., 2013). Altogether this suggest that
the intrinsic inhibitory potency of omeprazole is not affected by the
CYP2C19 genotype.

To investigate whether genotype impacts the outcome of DDIs
with a CYP2C19 inhibitor, individual microsomes were co-
exposed to inhibitors and the observed phenotypic switch was
classified (Figure 4; Supplementary Table S1). The consequences of
CYP2C19 inhibitor-mediated phenoconversion were different
between CYP2C19 genotypes. In *1/*1 donors, voriconazole
caused 50% of donors to exhibit residual activities representing
IMs or lower, whereas only 14% of *1/*17 exhibited such activities.
Of the genetically-predicted IMs, 5 out of 7 donors displayed NM
activities at baseline. Subsequent voriconazole treatment resulted
in 57% of genetically-predicted IMs to show a IM or PM
phenotype. Likewise, although fluvoxamine converted all donors
to phenotypic IMs or lower, predicted RMs (14%) were less likely
to be converted to functional PMs than predicted NMs (50%) or
IMs (57%). Treatment with omeprazole resulted in 43% of
genetically-predicted IMs to exhibit IM or PM activities,
whereas this was 21% for *1/*1 and only 14% for *1/
*17 donors. The two donors with a *17/*17 genotype converted
to either IMs or PMs upon inhibitor treatment, but this

FIGURE 3
Kinetic analysis of the impact of various CYP2C19 inhibitors on CYP2C19 activity and inactivation. (A) Impact of selected CYP2C19 inhibitors on
CYP2C19 activity for all included donors. Donors that were phenotypically PMs at baseline were excluded for treatment with inhibitors. 4′-hydroxylation
activity is shown as compared to control, where omeprazole is matched to its own time-dependent control. A one way ANOVA with matching was done
to test the impact of the inhibitors; ****p < 0.0001. (B) Kinact and KI determinations for the MDI of CYP2C19 by omeprazole for the various genotype
groups. The values of the apparent inactivation rate constant (Kobs) at each concentration of omeprazole are obtained from the slopes of the initial rates of
inactivation (Supplementary Figure S1). Individual data points represent the average of three separate experiments ±SD.
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phenoconversion may be an overprediction due to low basal
activity in these donors. Pantoprazole did not result in
phenoconversion in any of the genotypes.

These results suggests that the differential outcomes of CYP2C19-
mediated DDIs between genotypes are not dictated by distinctive
inhibitory strengths between genotypes but by the donors basal
CYP2C19 activity, that may in part be predicted by CYP2C19 genotype.

Discussion

In this study we aimed to quantify to what extent CYP2C19
polymorphisms can impact the outcome of a DDI with various

CYP2C19 inhibitors in human liver microsomes. In order to deliver
recommendations for DDGIs it is imperative to acquire a
quantitative comprehension of the phenoconversion that arises
subsequent to the co-administration of an inhibitor targeting the
same enzyme. Our results demonstrate that the outcome of a DDI is
dictated by both inhibitor strength and CYP2C19 activity, which is
in turn dependent on genotype and non-genetic factors including
comorbidities. This study provides a quantitative understanding of
the magnitude of DDGIs, which can ultimately aid in tailoring drug
therapy recommendations to an individual’s needs.

Phenoconversion due to the use of concomitant medication can
limit the accuracy of pharmacogenetic-based drug dosing. As such,
considering concomitant medication use seems an integral part of

FIGURE 4
CYP2C19 inhibitor-induced phenoconversion of CYP2C19 metabolism in various CYP2C19 genotypes. Individual microsomal fractions were co-
exposed to clinically relevant concentrations of inhibitors and residual CYP2C19 activity was measured. Concentrations resembled calculated unbound
maximal hepatic inlet concentrations for either 100 mg fluvoxamine, 40 mg omeprazole, 200 mg voriconazole or 40 mg pantoprazole (standard
dosing). Donors that were already phenotypically measured to be PM at baseline were excluded for treatment with inhibitors. Phenotype thresholds
were based on Kiss et al. (Kiss et al., 2018), after applying a scaling factor for S-mephenytoin substate concentration used in this experiment.
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CYP2C19 pharmacogenetic-based personalized therapy. Quantitative
data is required to assess phenoconversion after concomitant
medication use. Mostafa et al. used a conservative approach to
predict the corrected phenotype following the use of concomitant
moderate or strong CYP2C19 inhibitors (Mostafa et al., 2019). They
estimated that carriers of one or two functional alleles (*1) would
convert to a PM, and carriers of one or two increased functional alleles
(*17) would convert to an IM phenotype. Our results on strong
inhibition are in accordance with these predictions. Fluvoxamine, a
strong inhibitor of CYP2C19, caused 86% of *1/*17 donors to become
phenotypically IM, whereas most of genetically-predicted IMs were
converted to a PM phenotype (57%). In accordance with unaltered
CYP2C19 activity in patients with gastroesophageal reflux disease
taking pantoprazole, weak inhibition by pantoprazole did not induce
phenoconversion (Modak et al., 2016).

However, the outcomes of DDIs with moderate inhibitors
(omeprazole/voriconazole) matched less well to the proposed
phenoconversion model by Mostafa et al, which predicted that NMs/
IMs convert to a PM phenotype upon moderate inhibition of CYP2C19.
In our study, voriconazole, which acts as a moderate CYP2C19 inhibitor,
significantly reduced the drug metabolizing capabilities of CYP2C19 by
approximately one level (i.e., from a phenotypic NM to a IM). As a result,
40% of the donors (12/30) were converted into IM or PM phenotypes by
voriconazole. Though, none of the NMswere converted into PMs, except
for one donor who already exhibited impaired CYP2C19 activity in the
absence of voriconazole treatment (basal phenoconversion). For
omeprazole, phenoconversion into IM or PM phenotypes was even
less frequently seen, in only 10% of the donors (3/30). These findings are
in contrast to a clinical study, in which the pantoprazole-13C breath test
indicated that 96% of patients converted to a PM phenotype after
treatment with omeprazole or esomeprazole (Klieber et al., 2015). The
underlying cause of these significant alterations in the phenotype upon
PPI treatment observed in this study remains unclear. Especially since
concomitant administration of omeprazole generally results in changes in
area under the curve (AUC) of low magnitude (<2-fold), with little
clinical importance (Ogawa and Echizen, 2010).Moreover, a study on the
effect of omeprazole on the pharmacokinetics of the CYP2C19 substrate
moclobemide showed that the AUCs of NMs after omeprazole treatment
did not reach the observed AUCs of PMs within the study, indicating
phenoconversion to an IM rather than a PM phenotype (Yu et al., 2001).
Altogether, our data suggest that CYP2C19 inhibition by moderate
inhibitors can result in phenoconversion, but it seems unlikely to
result into a PM phenotype for wild-type *1/*1 genotypes.

Omeprazole is considered to be a MDI indicating that part of its
inhibitory activity of CYP2C19 is dependent on the biotransformation
of omeprazole into its active metabolites. For this reason, we
hypothesized that the inhibitory potency (KI/Kinact) of omeprazole
could be affected by the CYP2C19 genotype. Nonetheless, our data
in CYP2C19 genotype-matched donor pools showed no effect of
CYP2C19 genotype on the inhibitory potency of omeprazole. This is
in accordance with results for paroxetine, a MDI of CYP2D6, for which
the inhibitory parameters were also similar between different
CYP2D6 genotypes in a microsomal assay (Storelli et al., 2019).
These two studies highlight that the type of inhibitor (direct vs.
MDI) is presumably not a determinant in the outcome of DDI-
induced phenoconversion in donors with different genotypes.
Instead, our study reinforces that the outcome of a DDI and the
conversion of a patients phenotype depends on both the strength of

the CYP2C19 inhibitor and the basal activity of CYP2C19. Therefore,
both factors should be taken into account for phenotype predictions, as
successfully demonstrated for CYP2D6 (Borges et al., 2010).

As mentioned, one primary factor in determining the outcome of a
DDI is the initial enzyme activity, which is partly determined by an
individual’s genotype. However, our cohort also revealed discordance
between genotype-based prediction of CYP2C19 activity and actual
metabolizing capacity at baseline. These marked genotype-phenotype
discrepancies for CYP2C19metabolism are consistent with other studies.
In a large PK study, Lorenzini et al. reported the concordance between
CYP2C19 genotype-predicted phenotypes and measures phenotypes and
showed a low(er) concordance for genetically-predicted NMs (33%) and
UM’s (19%) in comparison to genetically predicted IM’s (91%) (Ing
Lorenzini et al., 2021). This CYP2C19 genotype-phenotype discrepancy is
retained in different ethnic populations (DeAndrés et al., 2016; deAndrés
et al., 2017; de Andrés et al., 2021). In isolated microsomes, Kiss et al.
reported, similarly to our own results, a 40% concordance (Kiss et al.,
2018). Importantly, we found a 2.5 fold increase in the occurrence of PMs
among our donors than what would be expected based on genotype data.
This is in concordancewith previous population studies which report that
the prevalence of phenotypic PMs could be up to 5–10 fold higher than
genetically-predicted (Mostafa et al., 2019; Gloor et al., 2022). This could
have important consequences, as drug interactions are typically pertinent
when an individual has a poor or intermediate capacity in the primary
metabolic pathway. Indeed, various clinical studies indicate that PMs are
at risk of decreased responsiveness or toxicity during CYP2C19 substrate
therapy (i.e., citalopram, omeprazole and clopidogrel) (Hicks et al., 2015;
Lima et al., 2021; Lee et al., 2022). It is therefore crucial to consider factors
that could be responsible for phenotype-genotype discrepancies and
thereby evoke phenoconversion and phenotypic poor metabolism
despite the presence of functional alleles.

A recent clinical phenotyping study by Gloor et al. demonstrated
that concomitant medication use could only explain 32% of the
CYP2C19-related phenoconversion (Gloor et al., 2022). This
underscores the importance of non-genetic factors and presumably
disease-related effects on CYP2C19 activity. In our cohort, the inclusion
of disease-related information could provide an explanation why two
RMs were phenotypically IMs/PMs, since even modest liver illness
significantly affects CYP2C19’s ability to metabolize drugs (Frye et al.,
2006). Another co-morbidity that is increasingly connected to changes
in drug metabolism is diabetes mellitus (Darakjian et al., 2021;
Neyshaburinezhad et al., 2023). In three of the four donors suffering
from diabetes mellitus, a PM phenotype was observed despite the
presence of one or two functional alleles. Importantly, the observed
disease-related changes were not related to C-reactive protein (CRP)
suggesting that metabolic rather than inflammatory mechanisms
contribute to these disease-related changes in drug metabolism.
Hence, similar to conclusions made by Kiss et al., including disease-
related factors could help to enhance the prediction of the
CYP2C19 phenotype (Kiss et al., 2018).

There is an increased interest in finding biomarkers to predict
the rate of drug metabolism in the liver to facilitate phenotype
predictions (Rowland et al., 2019; Achour et al., 2022). We
investigated whether mRNA expression in the liver itself can
predict the hepatic metabolizing capacity of CYP2C19. As
previously reported, total CYP2C19 mRNA levels were not a
good predictor of CYP2C19 mRNA activity (Rodríguez-Antona
et al., 2001; Pridgeon et al., 2022). One major limitation of
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expression studies is that the functional consequences of the
produced mRNA are not taken into account when assessing the
relationship between mRNA expression and activity. For example,
with respect to CYP2C19, the CYP2C19*2 alleles are linked to
splicing defects of mRNA and hence formation of inactive
protein (Chaudhry et al., 2015). Therefore, to better examine the
true relationship betweenmRNA expression and activity, we utilized
a primer-pair that predominantly detects functional mRNA and not
CYP2C19*2 mRNA. Examining functional CYP2C19 mRNA indeed
improved the correlation between expression and activity by ~2 fold,
but a large proportion of the variance remained unexplained.
Moreover, the moderate correlation that was observed was largely
driven by the genetic PMs within our cohort. This reinforces that, in
addition to genotyping, incorporation of hepatic mRNA expression
provides limited complementary value for predicting the drug
metabolizing capacity of individuals.

There are some limitations to address. First of all, the phenotype
thresholds used to define phenoconversion are based on values reported
in literature and might over- or overpredict the extent of
phenoconversion. However, phenotype assessment is essential in
order to ultimately create DDGI guidelines, since dosing
adjustments are made based on phenotypes in clinical practice. Van
der Lee et al. proposed that a patient’s phenotype prediction can be
improved by using a continuous scale for this prediction rather than a
set threshold between two phenotype groups (Van der Lee et al., 2021).
Still, 21% of interindividual variability in CYP2D6 could not be
explained by this approach, rendering it likely that non-genetic
factors contribute to this variability. As such, the CYP450 genotype
should be interpreted in the clinical context of the individual patient,
considering all feasible contributors to CYP450 metabolic function.
Borges et al. used a scoring system that incorporates both
CYP2D6 genetic variation and CYP2D6 mediated DDIs, which
showed to improve phenotype prediction as compared to genetic
information alone (Borges et al., 2010). Such a scoring system lends
itself well to be extended to other non-genetic factors, such as the
presence of liver disease or other comorbidities. A scoring system tool
that incorporates bothCYP2C19 activity on a continuous scale, together
with the inhibitory effect of DDIs and comorbidities (i.e., liver disease)
will likely improve the pharmaco-genotype to phenotype translation.

Secondly, this study was conducted in liver biopsies that were
genotyped for *2, *3 and *17 variants, as these alleles are most
prevalent among Europeans and recommended for clinical testing by
the pharmacogenetics working group of the American association for
molecular pathology (Pratt et al., 2018). While disease-related factors may
explain most of the observed phenoconversion into lower drug-
metabolizing phenotypes among our patients, it is important to
consider that other (rare) genetic variants within CYP2C19 could also
have influenced themismatch between predicted and observed activities in
our study (Ingelman-Sundberg et al., 2018). Furthermore, it is necessary to
acknowledge that extrapolating ourfindings to non-European populations
may be challenging due to differences in the genomic architecture of
CYP2C19 across populations (Zhou et al., 2017). Therefore, investigating
phenoconversion in other populations, such as Asians or Africans, where
alleles like *3 or *9may contribute to basal activity andmodulate DDIs for
CYP2C19-dependent drugs, would be of great interest.

Another potential limitation relates to the selection of
concentrations of the inhibitors in this study. Input parameters for
calculating these concentrations were dependent on available literature.

Still, the EMA and FDA support that the unbound maximum hepatic
inlet concentration adequately mimics the clinical inhibition of hepatic
P450 enzymes (Parkinson, 2019). Goutelle et al. utilized reported AUCs
in NMs with and without CYP2C19 inhibitors, along with the
contribution ratio of the substrate drug, to calculate inhibitory
potencies of CYP2C19 inhibitors for predicting drug interactions in-
vivo (Goutelle et al., 2013). Their calculated AUC ratios for omeprazole
40 mg/day and voriconazole 400 mg/day were 43% and 66%, which are
consistent with the inhibitory potency observed in our microsomal
assay (37% and 59%, respectively). It should be noted that our chosen
concentration of fluvoxamine may underestimate the phenoconversion
to some extent since we report 85% inhibition, whereas Goutelle et al.
reported 97%. Calculated unbound maximum hepatic inlet
concentrations used in our assay are thus likely to represent the
observed inhibitory potencies in-vivo. A clinical trial investigating
the risk of DDI-induced CYP2C19 phenoconversion in healthy
volunteers is now ongoing, and will likely inform whether the
magnitude of CYP2C19 inhibition observed in our in-vitro system
matches a clinical setting (NCT05264142).

In conclusion, this study suggests that the differential outcomes of
CYP2C19-mediated DDIs are not determined by different inhibitory
strengths between genotypes, but by the basal activity of CYP2C19. This
activity can in part be predicted by CYP2C19 genotype, but is also
influenced by disease-related factors. This underlines the necessity to
integrate both genetic data as well as comedication use and disease-
related factors into a person’s predicted phenotype.
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