4,245 research outputs found
Coherent Diffraction Imaging of Single 95nm Nanowires
Photonic or electronic confinement effects in nanostructures become
significant when one of their dimension is in the 5-300 nm range. Improving
their development requires the ability to study their structure - shape, strain
field, interdiffusion maps - using novel techniques. We have used coherent
diffraction imaging to record the 3-dimensionnal scattered intensity of single
silicon nanowires with a lateral size smaller than 100 nm. We show that this
intensity can be used to recover the hexagonal shape of the nanowire with a
28nm resolution. The article also discusses limits of the method in terms of
radiation damage.Comment: 5 pages, 5 figure
Multilevel Contracts for Trusted Components
This article contributes to the design and the verification of trusted
components and services. The contracts are declined at several levels to cover
then different facets, such as component consistency, compatibility or
correctness. The article introduces multilevel contracts and a
design+verification process for handling and analysing these contracts in
component models. The approach is implemented with the COSTO platform that
supports the Kmelia component model. A case study illustrates the overall
approach.Comment: In Proceedings WCSI 2010, arXiv:1010.233
Performance de l’oxymétrie nocturne dans le diagnostic du syndrome d’apnées du sommeil. Etude monocentrique menée au centre Hospitalier de Longjumeau/France: Performance of nocturnal oximetry in the diagnosis of sleep apnea syndrome. Single-center study from Longjumeau Hospital Center / France
Context and objective. Sleep apnea-hypopnea syndrome (SAHOS) is currently under diagnosed or ignored, due to a poor access to polysomnography, the ’gold-standard’’ diagnostic test. Yet, sleep disorder is linked to many complications mainly, cardiovascular disorders. The present study aimed to assess the relevance of overnight pulse oximetry in diagnosing SAHOS. Methods. A cross-sectional analysis was conducted between January 1st and September 30th, 2017. All patients suspected of SAHOS syndrome underwent an overnight pulse oximetry (OPO) and a respiratory polygraphy (PG). Data were analysed using Excel 2010 and SSPSS 21.0, to establish the sensitivity, specificity, the positive and negative predictive value and ROC curve was calculated to determine the performance of OPO compared to PG. Results. 201 patients were enrolled (median age of 64.6 +/- 11.8 years). Males (55%) and obese (medium BMI of 32 kg/m² were preponderant. The sensitivity and specificity of overnight pulse oximetry were 87 % and 85 %, respectively with ROC curve prominently rising at 0.75. Conclusion. The study showing a high sensitivity and specificity suggests that the overnight oximetry could stand as a more accessible alternative to polygraphy in the diagnosis of Sleep apnea-hypopnea syndrome where the latter is not available.
Contexte & objectif. Le syndrome d’apnées du sommeil est une pathologie fréquemment sous diagnostiquée et souvent méconnue; particulièrement à cause d’une accessibilité insuffisante au gold-standard du diagnostic, la polysomnographie ou la polygraphie ventilatoire. Et pourtant, l’affection est responsable des complications surtout cardiovasculaires majeures. L’objectif de la présente étude était d’évaluer le niveau de performance de l’oxymétrie nocturne dans le diagnostic du syndrome d’apnées du sommeil. Méthodes. Enquête transversale menée entre le 1er janvier 2016 et le 30 septembre 2017. Tous les patients hospitalisés pour suspicion du syndrome d’apnées du sommeil ont bénéficié d’une oxymétrie nocturne et d’une polygraphie ventilatoire. Les logiciels Excel 2010 et SSPSS 21.0 ont permis d’analyser les données. Nous avons déterminé la sensibilité, la spécificité, la valeur prédictive positive et la valeur prédictive négative. La courbe ROC a été calculée. p < 0,05. Résultats. Au total 201 patients d’âge moyen de 64,6±11,8 ans, avec une prédominance masculine (55%) et en majorité obèses (IMC moyen de 32kg/m²) ont été inclus. La sensibilité et la spécificité de l’oxymétrie nocturne sont respectivement de 87 et de 85% avec une courbe ROC montrant une surface importante sous la courbe de 0,75. Conclusion. Avec sa sensibilité et spécificité élevées, l’oxymétrie nocturne peut constituer une alternative valable au diagnostic du syndrome d’apnées du sommeil. Son innocuité et sa bonne acceptabilité en font un outil facilement exportable et recommandable en cas de carence de moyens appropriés
The cyclic ground state structure of the HF trimer revealed by far infrared jet-cooled Fourier transform spectroscopy.
International audienceThe rovibrationally resolved Fourier transform (FT) far infrared (FIR) spectra of two intermolecular librations of (HF)3, namely the in-plane ν6 and out-of-plane ν4 bending fundamentals centered, respectively, at about 494 cm(-1) and 602 cm(-1), have been recorded for the first time under jet-cooled conditions using the supersonic jet of the Jet-AILES apparatus. The simultaneous rotational analysis of 245 infrared transitions belonging to both bands enabled us to determine the ground state (GS), ν6 and ν4 rotational and centrifugal distortion constants. These results provided definite experimental answers to the structure of such a weakly bound trimer: firstly the vibrationally averaged planarity of cyclic (HF)3, also supported by the very small value of the inertia defect obtained in the GS, secondly the slight weakening of the hydrogen bond in the intermolecular excited states evidenced from the center of mass separations of the HF constituents determined in the ground, ν6 = 1 and ν4 = 1 states of (HF)3 as well as the decrease of the fitted rotational constants upon excitation. Finally, lower bounds of about 2 ns on ν6 and ν4 state lifetimes could be derived from the deconvolution of experimental linewidths. Such long lifetimes highlight the interest in probing low frequency intermolecular motions of molecular complexes to get rid of constraints related to the vibrational dynamics of coupled anharmonic vibrations at higher energy, resulting in loss of rotational information
Aliasing of the Schumann resonance background signal by sprite-associated Q-bursts
The Earth's naturally occurring Schumann resonances (SR) are composed of a quasi-continuous background component and a larger-amplitude, short-duration transient component, otherwise called ‘Q-burst’ (Ogawa et al., 1967). Sprites in the mesosphere are also known to accompany the energetic positive ground flashes that launch the Q-bursts (Boccippio et al., 1995). Spectra of the background Schumann Resonances (SR) require a natural stabilization period of ~10–12 min for the three conspicuous modal parameters to be derived from Lorentzian fitting. Before the spectra are computed and the fitting process is initiated, the raw time series data need to be properly filtered for local cultural noise, narrow band interference as well as for large transients in the form of global Q-bursts. Mushtak and Williams (2009) describe an effective technique called Isolated Lorentzian (I-LOR), in which, the contributions from local cultural and various other noises are minimized to a great extent. An automated technique based on median filtering of time series data has been developed. These special lightning flashes are known to have greater contribution in the ELF range (below 1 kHz) compared to general negative CG strikes (Huang et al., 1999; Cummer et al., 2006). The global distributions of these Q-bursts have been studied by Huang et al. (1999) Rhode Island, USA by wave impedance methods from single station ELF measurements at Rhode Island, USA and from Japan Hobara et al. (2006). The present work aims to demonstrate the effect of Q- bursts on SR background spectra using GPS time-stamped observation of TLEs. It is observed that the Q-bursts selected for the present work do alias the background spectra over a 5-s period, though the amplitudes of these Q- bursts are far below the background threshold of 16 Core Standard Deviation (CSD) so that they do not strongly alias the background spectra of 10–12 min duration. The examination of one exceptional Q-burst shows that appreciable spectral aliasing can occur even when 12-min spectral integrations are considered. The statistical result shows that for a 12-min spectrum, events above 16 CSD are capable of producing significant frequency aliasing of the modal frequencies, although the intensity aliasing might have a negligible effect unless the events are exceptionally large (~200 CSD). The spectral CSD methodology may be used to extract the time of arrival of the Q-burst transients. This methodology may be combined with a hyperbolic ranging, thus becoming an effective tool to detect TLEs globally with a modest number of networked observational stations.Peer ReviewedPostprint (published version
Stromal mesenchyme cell genes of the human prostate and bladder
BACKGROUND: Stromal mesenchyme cells play an important role in epithelial differentiation and likely in cancer as well. Induction of epithelial differentiation is organ-specific, and the genes responsible could be identified through a comparative genomic analysis of the stromal cells from two different organs. These genes might be aberrantly expressed in cancer since cancer could be viewed as due to a defect in stromal signaling. We propose to identify the prostate stromal genes by analysis of differentially expressed genes between prostate and bladder stromal cells, and to examine their expression in prostate cancer. METHODS: Immunohistochemistry using antibodies to cluster designation (CD) cell surface antigens was first used to characterize the stromas of the prostate and bladder. Stromal cells were prepared from either prostate or bladder tissue for cell culture. RNA was isolated from the cultured cells and analyzed by DNA microarrays. Expression of candidate genes in normal prostate and prostate cancer was examined by RT-PCR. RESULTS: The bladder stroma was phenotypically different from that of the prostate. Most notable was the presence of a layer of CD13(+ )cells adjacent to the urothelium. This structural feature was also seen in the mouse bladder. The prostate stroma was uniformly CD13(-). A number of differentially expressed genes between prostate and bladder stromal cells were identified. One prostate gene, proenkephalin (PENK), was of interest because it encodes a hormone. Secreted proteins such as hormones and bioactive peptides are known to mediate cell-cell signaling. Prostate stromal expression of PENK was verified by an antibody raised against a PENK peptide, by RT-PCR analysis of laser-capture microdissected stromal cells, and by database analysis. Gene expression analysis showed that PENK expression was down-regulated in prostate cancer. CONCLUSION: Our findings show that the histologically similar stromas of the prostate and bladder are phenotypically different, and express organ-specific genes. The importance of these genes in epithelial development is suggested by their abnormal expression in cancer. Among the candidates is the hormone PENK and the down-regulation of PENK expression in cancer suggests a possible association with cancer development
Real-time monitoring of enzymatic DNA hydrolysis by electrospray ionization mass spectrometry
A fast and direct method for the monitoring of enzymatic DNA hydrolysis was developed using electrospray ionization mass spectrometry. We incorporated the use of a robotic chip-based electrospray ionization source for increased reproducibility and throughput. The mass spectrometry method allows the detection of DNA fragments and intact non-covalent protein–DNA complexes in a single experiment. We used the method to monitor in real-time single-stranded (ss) DNA hydrolysis by colicin E9 DNase and to characterize transient non-covalent E9 DNase–DNA complexes present during the hydrolysis reaction. The mass spectra showed that E9 DNase interacts with ssDNA in the absence of a divalent metal ion, but is strictly dependent on Ni(2+) or Co(2+) for ssDNA hydrolysis. We demonstrated that the sequence selectivity of E9 DNase is dependent on the ratio protein:ssDNA or the ssDNA concentration and that only 3′-hydroxy and 5′-phosphate termini are produced. It was also shown that the homologous E7 DNase is reactive with Zn(2+) as transition metal ion and that this DNase displays a different sequence selectivity. The method described is of general use to analyze the reactivity and specificity of nucleases
Individual differences in local gray matter density are associated with differences in affective and cognitive empathy
The understanding of empathy from a neuroscientific perspective has recently developed quickly, with numerous functional MRI studies associating different brain regions with different components of empathy. A recent meta-analysis across 40 fMRI studies revealed that affective empathy is most often associated with increased activity in the insula, whereas cognitive empathy is most often associated with activity in the midcingulate cortex and adjacent dorsomedial prefrontal cortex (MCC/dmPFC). To date, however, it remains unclear whether individual differences in brain morphometry in these regions underlie different dispositions in affective and cognitive empathy. In order to test this hypothesis, voxel-based morphometry (VBM) was used to examine the extent to which gray matter density predicts scores from an established empathy measure (Questionnaire of Cognitive and Affective Empathy; QCAE). One hundred and seventy-six participants completed the QCAE and underwent MRI in order to acquire a high-resolution, three-dimensional T1-weighted structural scans. A factor analysis of the questionnaire scores revealed two distinct factors of empathy, affective and cognitive, which confirmed the validity of the QCAE. VBM results revealed gray matter density differences associated with the distinct components of empathy. Higher scores on affective empathy were associated with greater gray matter density in the insula cortex and higher scores of cognitive empathy were associated with greater gray matter density in the MCC/dmPFC. Taken together, these results provide validation for empathy being a multi-component construct, suggesting that affective and cognitive empathy are differentially represented in brain morphometry as well as providing convergent evidence for empathy being represented by different neural and structural correlates
Collective ERK/Akt activity waves orchestrate epithelial homeostasis by driving apoptosis-induced survival.
Cell death events continuously challenge epithelial barrier function yet are crucial to eliminate old or critically damaged cells. How such apoptotic events are spatio-temporally organized to maintain epithelial homeostasis remains unclear. We observe waves of extracellular-signal-regulated kinase (ERK) and AKT serine/threonine kinase (Akt) activity pulses that originate from apoptotic cells and propagate radially to healthy surrounding cells. This requires epidermal growth factor receptor (EGFR) and matrix metalloproteinase (MMP) signaling. At the single-cell level, ERK/Akt waves act as spatial survival signals that locally protect cells in the vicinity of the epithelial injury from apoptosis for a period of 3-4 h. At the cell population level, ERK/Akt waves maintain epithelial homeostasis (EH) in response to mild or intense environmental insults. Disruption of this spatial signaling system results in the inability of a model epithelial tissue to ensure barrier function in response to environmental insults
- …