348 research outputs found
Bioluminescence of Colonial Radiolaria in the Western Sargasso Sea
Colonial radiolaria (Protozoa: Spumellarida) were a conspicuous feature in surface waters of the Sargasso Sea during the April (1985) Biowatt cruise. The abundance of colonies at the sea surface at one station was estimated to be 23 colonies · m−2.
Bioluminescence by colonial radiolaria, representing at least six taxa, was readily evoked by mechanical stimuli and measured by fast spectroscopy and photon-counting techniques. Light emission was deep blue in color (peak emissions between 443 and 456 nm) and spectral distributions were broad (average half bandwidth of 80 nm). Single flashes were 1–2 s in duration at ≈23 °C, with species-dependent kinetics which were not attributed to differences in colony morphology, since colonies similar in appearance could belong to different species (even families) and display different flash kinetics. Although the presence of dinoflagellate symbionts was confirmed by the presence of dinoflagellate marker pigments in the colonies, luminescence in the radiolaria examined most likely did not originate from symbiotic dinoflagellates because of (1) differences in the emission spectra, (2) unresponsiveness to low pH stimulation, (3) differences in flash kinetics and photon emission of light emission, and (4) lack of light inhibition.
The quantal content of single flashes averaged 1 × 109 photons flash−1, and colonies were capable of prolonged light emission. The mean value of bioluminescence potential based on measurements of total mechanically stimulated bioluminescence was 1.2 × 1011 photons · colony−1. It is estimated that colonial radiolaria are capable of producing ≈2.8 × 1012 photons · m−2 of sea surface. However, this represented only 0.5% of in situ measured bioluminescence potential
Diversity and productivity of photosynthetic picoeukaryotes in biogeochemically distinct regions of the South East Pacific Ocean
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 61 (2016): 806–824, doi:10.1002/lno.10255.Picophytoplankton, including photosynthetic picoeukaryotes (PPE) and unicellular cyanobacteria, are important contributors to plankton biomass and primary productivity. In this study, phytoplankton composition and rates of carbon fixation were examined across a large trophic gradient in the South East Pacific Ocean (SEP) using a suite of approaches: photosynthetic pigments, rates of 14C-primary productivity, and phylogenetic analyses of partial 18S rRNA genes PCR amplified and sequenced from flow cytometrically sorted cells. While phytoplankton >10 μm (diatoms and dinoflagellates) were prevalent in the upwelling region off the Chilean coast, picophytoplankton consistently accounted for 55–92% of the total chlorophyll a inventories and >60% of 14C-primary productivity throughout the sampling region. Estimates of rates of 14C-primary productivity derived from flow cytometric sorting of radiolabeled cells revealed that the contributions of PPE and Prochlorococcus to euphotic zone depth-integrated picoplankton productivity were nearly equivalent (ranging 36–57%) along the transect, with PPE comprising a larger share of picoplankton productivity than cyanobacteria in the well-lit (>15% surface irradiance) region compared with in the lower regions (1–7% surface irradiance) of the euphotic zone. 18S rRNA gene sequence analyses revealed the taxonomic identities of PPE; e.g., Mamiellophyceae (Ostreococcus) were the dominant PPE in the upwelling-influenced waters, while members of the Chrysophyceae, Prymnesiophyceae, Pelagophyceae, and Prasinophyceae Clades VII and IX flourished in the oligotrophic South Pacific Subtropical Gyre. Our results suggest that, despite low numerical abundance in comparison to cyanobacteria, diverse members of PPE are significant contributors to carbon cycling across biogeochemically distinct regions of the SEP.Support for this work derived from U.S. National Science Foundation grants to C-MORE (EF-0424599; DMK) and OCE-1241263 (MJC). Additional support was received from the University of Hawai'i Denise B. Evans Research Fellowship in Oceanography (YMR), the Gordon and Betty Moore Foundation (DMK), and the Simons Foundation via the Simons Collaboration on Ocean Processes and Ecology (SCOPE: DJR, MJC, and DMK)
Recommended from our members
Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre
The euphotic zone below the deep chlorophyll maximum layer (DCML) at Station ALOHA (a long-term oligotrophic habitat assessment; 22º45′N, 158º00′W) transects the nearly permanently stratified upper thermocline. Hence, seasonal changes in solar radiation control the balance between photosynthesis and respiration in this lightlimited region. Combining profiles of radiance reflectance, algal pigments, and inorganic nutrients collected between January 1998 and December 2000, we explore the relationships between photosynthetically available radiation (PAR), phytoplankton biomass (chlorophyll a), and the position of the upper nitracline in the lower euphotic zone. Seasonal variations in the water-column PAR attenuation coefficient displace the 1% sea-surface PAR depth from approximately 105 m in winter to 121 m in summer. However, the seasonal depth displacement of isolumes (constant daily integrated photon flux strata) increases to 31 m due to the added effect of changes in sea-surface PAR. This variation induces a significant deepening of the DCML during summertime with a concomitant increase in chlorophyll a and the removal of 36 mmol m22 inorganic nitrogen [NO–3 NO–2] in the 90–200-m depth range, equivalent to approximately 34% of the annual flux of particulate nitrogen collected in sediment traps placed at 150 m. We conclude that in this oceanic region the annual light cycle at the base of the euphotic zone induces an increase in the phototrophic biomass analogous to a spring bloom event
Influence of a Cyclonic Eddy on Microheterotroph Biomass and Carbon Export in the Lee of Hawaii
[1] A multi‐platform sampling strategy was used to investigate carbon cycling in a cold‐core eddy that formed in the lee of Hawaii during September 2000. Microheterotroph biomass and 234Th‐derived carbon export rates within the eddy were 2 to 3 times higher than those observed for adjacent waters. If this eddy is representative of other cyclonic eddies that are frequently formed in the lee of Hawaii, then eddy activity may significantly enhance the areal efficiency of the biological pump and facilitate the transfer of organic carbon to organisms inhabiting the mesopelagic and abyssal‐benthic zones of this subtropical ecosystem
Recommended from our members
Particle distributions and dynamics in the euphotic zone of the North Pacific Subtropical Gyre
During the summer of 2012, we used laser diffractometry to investigate the temporal and vertical variability of the particle size spectrum (1.25–100 µm in equivalent diameter) in the euphotic zone of the North Pacific Subtropical Gyre. Particles measured with this optical method accounted for ∼40% of the particulate carbon stocks (<202 µm) in the upper euphotic zone (25–75 m), as estimated using an empirical formula to transform particle volume to carbon concentrations. Over the entire vertical layer considered (20–180 m), the largest contribution to particle volume corresponded to particles between 3 and 10 µm in diameter. Although the exponent of a power law parameterization suggested that larger particles had a lower relative abundance than in other regions of the global ocean, this parameter and hence conclusions about relative particle abundance are sensitive to the shape of the size distribution and to the curve fitting method. Results on the vertical distribution of particles indicate that different size fractions varied independently with depth. Particles between 1.25 and 2 µm reached maximal abundances coincident with the depth of the chlorophyll a maximum (averaging 121 ± 10 m), where eukaryotic phytoplankton abundances increased. In contrast, particles between 2 and 20 µm tended to accumulate just below the base of the mixed layer (41 ± 14 m). Variability in particle size tracked changes in the abundance of specific photoautotrophic organisms (measured with flow cytometry and pigment concentration), suggesting that phytoplankton population dynamics are an important control of the spatiotemporal variability in particle concentration in this ecosystem.KEYWORDS: laser diffraction, particle size distribution, North Pacific Subtropical GyreThis is the publisher’s final pdf. The article is copyrighted by American Geophysical Union and published by John Wiley & Sons Ltd. It can be found at: http://agupubs.onlinelibrary.wiley.com/agu/jgr/journal/10.1002/%28ISSN%292169-9291
Recommended from our members
Impact of climate forcing on ecosystem processes in the North Pacific Subtropical Gyre
Measurements at the Hawaii Ocean Time-series (HOT) Station ALOHA (22 degrees 45'N, 158 degrees W) have revealed a significant, approximately 50% increase in euphotic zone depth-integrated rates of primary production ( PP; mol C fixed m(-2) d(-1)) based on in situ C-14 experiments. The character of the nearly two-decade increasing trend in PP was punctuated by several abrupt episodes that coincided with changes in the El Nino/ Southern Oscillation (ENSO), and the Pacific Decadal Oscillation (PDO) climate indices, or both. In contrast to the observed increase in rates of PP, the PP per unit chlorophyll a ( mol C fixed mol chl a(-1) d(-1)), a measure of the biomass-normalized production, was relatively constant, whereas PP per unit solar radiation ( mol C fixed mol quanta(-1)), a measure of the efficiency of light utilization, varied in synchrony with the temporal trend in PP. Coincident with variations in PP, the HOT program core data sets also revealed changes in mixed-layer depth, upper ocean stratification, inorganic nutrients, phototrophic microbial abundances and pigment inventories. These time-series data suggest that the ENSO/PDO may control upper ocean stratification and vertical nutrient delivery into the euphotic zone at Sta. ALOHA, thereby influencing the composition of the plankton assemblage and altering rates of PP and particulate matter export
Recommended from our members
Quantifying the surface-subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies
A central question addressed by the VERTIGO (VERtical Transport In the Global Ocean) study was 'What controls the efficiency of particle export between the surface and subsurface ocean'? Here, we present data from sites at ALOHA (N Central Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate them via a simple planktonic foodweb model, to subsurface particle export (150-500 m). Three key factors enable quantification of the surface-subsurface coupling: a sampling design to overcome the temporal lag and spatial displacement between surface and subsurface processes; data on the size-partitioning of Net Primary Production (NPP) and subsequent transformations prior to export; estimates of the ratio of algal- to faecal-mediated vertical export flux. At ALOHA, phytoplankton were characterized by low stocks, NPP, F{sub v}/F{sub m} (N-limited), and were dominated by picoplankton. The HNLC waters at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to low proportion of diatoms) between deployment 1 and 2. Prediction of export exiting the euphotic zone was based on size-partitioning of NPP, a copepod-dominated foodweb and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export was 20-22 mg POC m{sup -2} d{sup -1} at ALOHA (i.e. 10-11% NPP (0-125 m); 1.1-1.2 x export flux at 150 m (E{sub 150}). At K2, export was 111 mg C m{sup -2} d{sup -1} (21% NPP (0-50 m); 1.8 x E{sub 150}) and 33 mg POC m{sup -2} d{sup -1} (11% NPP, 0-55 m); 1.4 x E{sub 150}) for deployments 1 and 2, respectively. This decrease in predicted export at K2 matches the observed trend for E{sub 150}. Also, the low attenuation of export flux from 60 to 150 m is consistent with that between 150 to 500 m. This strong surface-subsurface coupling suggests that phytoplankton productivity and floristics play a key role at K2 in setting export flux, and moreover that pelagic particle transformations by grazers strongly influence to what extent sinking particles are further broken down in the underlying waters of the Twilight Zone
Recommended from our members
Initiation of the spring phytoplankton increase in the Antarctic Polar Front Zone at 170°W
During austral summer 1997, satellite imagery revealed enhanced chlorophyll associated with the Antarctic Polar Front at 170°W. Phytoplankton growth conditions during the early stages of the spring increase were investigated on the Antarctic Environment and Southern Ocean Process Study Survey I cruise using flow cytometry (FCM) and microscopy to characterize community biomass, composition and biological stratification and dilution experiments to estimate growth and grazing rates. Physical and biological measures showed a general shoaling of mixed layer depth from ~200 to 20 μm) cells, greater contributions if diatoms and ciliate, and a twofold higher ratio of protistan grazers to photoautotrophs. Phytoplankton community growth rates from incubations at 10 and 23% of surface incident light showed good agreement between high-performance liquid chromatography estimated of chlorophyll a (Chl a) (0.20 d¯¹) and FCM cell-based (0.21 d¯¹) results. Fucoxanthin-based estimates for diatoms were 0.24 d¯¹. Mean estimates of microzooplankton grazing from the three phytoplankton measures were 0.16, 0.12, and 0.11 d¯¹, respectively. Heterotrophs typically consumed 40-100% of their carbon per day and this presumably grew at rates similar to phytoplankton. The low net rates of Chl a increase in shipboard bottle incubations (0.04 d¯¹) were consistent with the slow downstream accumulation of phytoplankton biomass (0.03 d¯¹) as measured with instrumented Lagrangian drifters through the month of November. Both were slightly less than the net rate estimates from SeaSoar surveys (0.05 d¯¹) because of the effects of pigment photoadaption (bleaching) during this time of increasing light level and water column stratification.Copyrighted by American Geophysical Union
- …