78 research outputs found

    The impacts of crystalline structure and different surface functional groups on drug release and the osseointegration process of nanostructured TiO2TiO_2

    Get PDF
    In implantable materials, surface topography and chemistry are the most important in the effective osseointegration and interaction with drug molecules. Therefore, structural and surface modifications of nanostructured titanium dioxide (TiO2) layers are reported in the present work. In particular, the modification of annealed TiO2 samples with —OH groups and silane derivatives, confirmed by X-ray photoelectron spectroscopy, is shown. Moreover, the ibuprofen release process was studied regarding the desorption-desorption-diffusion (DDD) kinetic model. The results proved that the most significant impact on the release profile is annealing, and further surface modifications did not change its kinetics. Additionally, the cell adhesion and proliferation were examined based on the MTS test and immunofluorescent staining. The obtained data showed that the proposed changes in the surface chemistry enhance the samples’ hydrophilicity. Moreover, improvements in the adhesion and proliferation of the MG-63 cells were observed

    Deposition of Thin Electroconductive Layers of Tin (II) Sulfide on the Copper Surface Using the Hydrometallurgical Method: Electrical and Optical Studies

    Get PDF
    Thin films of tin (II) sulfide (SnS) were deposited onto a 500 µm thick copper substrate by a chemical bath method. The effect of sodium (Na) doping in these films was studied. The synthesis of the films was performed at temperatures of 60, 70, and 80 °C for 5 min. The microstructure of the SnS films analyzed by scanning electron microscopy (SEM) showed a compact morphology of the films deposited at 80 °C. The edges of the SnS grains were rounded off with the addition of a commercial surfactant. The thickness of different SnS layers deposited on the copper substrate was found to be 230 nm from spectroscopic ellipsometry and cross-section analysis using SEM. The deposition parameters such as temperature, surfactant addition, and sodium doping time did not affect the thickness of the layers. From the X-ray diffraction (XRD) analysis, the size of the SnS crystallites was found to be around 44 nm. Depending on the process conditions, Na doping affects the size of the crystallites in different ways. A study of the conductivity of SnS films provides a specific conductivity value of 0.3 S. The energy dispersive analysis of X-rays (EDAX) equipped with the SEM revealed the Sn:S stoichiometry of the film to be 1:1, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis. The determined band-gap of SnS is equal to 1.27 eV and is in good agreement with the literature data

    INFLUENCE OF ADSORPTION ON THE CHARGE TRANSFER REACTIONS AT THE PYRITE SURFACE. PRELIMINARY STUDY

    Get PDF
    Abstract. Electrochemical impedance spectroscopy was used to measure the charge transfer resistance of the reaction: Fe 3+ + e -= Fe 2+ and electrical double layer capacitance on pyrite electrodes of different origin both freshly polished and conditioned in the solutions of several surface active substances which may be used as potential inhibitors of the oxidation of pyrite. The following substances were used for conditioning of the pyrite samples: sodium dodecylsulfate (SDS), sodium oleate (NaOL), n-octanol (n-OA), dodecyltrimethylammonium chloride (CTACl), 2-mercaptobenzthiazole (MBT) and bis(2-etylhexyl) phosphate (D2EHP). The highest degree of adsorption, and the highest increase in the charge transfer resistance was observed for MBT, NaOL and D2EHP. Those compounds can be used as inhibitors of the pyrite oxidation

    Electrochemically deposited nanocrystalline InSb thin films and their electrical properties

    Get PDF
    We present an electrochemical route to prepare nanocrystalline InSb thin films that can be transferred to an industrial scale. The morphology, composition, and crystallinity of the prepared uniform and compact thin films with a surface area of around 1 cm2 were investigated. The essential electrical characteristics such as conductivity, Seebeck coefficient, the type, concentration and mobility of charge carriers have been examined and compared with InSb nanowires obtained in the same system for electrochemical deposition (fixed pulse sequence, temperature, electrolyte composition, and system geometry). Moreover, obtained thin films show much higher band gap energy (0.53 eV) compared to the bulk material (0.17 eV) and InSb nanowires (0.195 eV)

    The Mechanism of Phase Transfer Synthesis of Silver Nanoparticles Using a Fatty Amine as Extractant/Phase Transfer Agent

    Get PDF
    The paper presents the research results on synthesizing silver nanoparticles in aqueous solutions and their extraction into the organic phase. Studies have shown that it is best to perform the extraction process using n-hexane > cyclohexane > toluene > chloroform > ethyl acetate. The results show a correlation between the dielectric constant of the organic phase and its ability to extract nanoparticles. The lower the dielectric constant is, the higher the extractability. The hydrodynamic radius of the silver nanoparticles changes after transfer to the organic phase, depending greatly on the organic phase used. The extraction mechanism is complex and multi-step. As the first step, the Ag nanoparticles are transferred to the phase boundary. As the second step, the octadecylamine (ODA) molecules adsorb on the silver nanoparticles (AgNPs) surface. The change in particle shape was also noted. This suggests that the interfacial processes are more complex than previously reported. Below the initial concentration of ODA 2 × 10−4 M, the formation of a third phase has been observed. In a one-stage experiment, the concentration of silver nanoparticles after transferring to the organic phase was increased 500 times in about 10 s. The role of the concentration of ODA, therefore, is not only a measure of the extraction efficiency and productivity but functions as an enabler to maintain favorable biphasic processing, which underlines the role of the solvent again

    The mechanism of phase transfer synthesis of silver nanoparticles using a fatty amine as extractant/phase transfer agent

    Get PDF
    The paper presents the research results on synthesizing silver nanoparticles in aqueous solutions and their extraction into the organic phase. Studies have shown that it is best to perform the extraction process using n-hexane > cyclohexane > toluene > chloroform > ethyl acetate. The results show a correlation between the dielectric constant of the organic phase and its ability to extract nanoparticles. The lower the dielectric constant is, the higher the extractability. The hydrodynamic radius of the silver nanoparticles changes after transfer to the organic phase, depending greatly on the organic phase used. The extraction mechanism is complex and multi-step. As the first step, the Ag nanoparticles are transferred to the phase boundary. As the second step, the octadecylamine (ODA) molecules adsorb on the silver nanoparticles (AgNPs) surface. The change in particle shape was also noted. This suggests that the interfacial processes are more complex than previously reported. Below the initial concentration of ODA 2 × 10−4 M, the formation of a third phase has been observed. In a one-stage experiment, the concentration of silver nanoparticles after transferring to the organic phase was increased 500 times in about 10 s. The role of the concentration of ODA, therefore, is not only a measure of the extraction efficiency and productivity but functions as an enabler to maintain favorable biphasic processing, which underlines the role of the solvent again

    Circular solid state reduction process of fine copper powder synthesis with life cycle assessment for photovoltaics application

    Get PDF
    This paper presents the process of synthesis of copper powders obtained by the pyrometallurgical method without the participation of the liquid phase. This method is based on the simultaneous decomposition and reduction of copper (II) carbonate. Hydrogen was used as a reducing agent. Due to the strongly exothermic thermal effect of the reduction reaction, a mixture of inert gas and hydrogen was used to better control the parameters. Studies have shown that the carbonate method enables the synthesis of copper powders with a narrow distribution and controlled size. The size is controlled by the grinding time of the copper (II) carbonate. An life cycle assessment and circularity study evaluate the sustainability of the new process, and focus is given to the energy efficiency
    corecore