10 research outputs found

    Challenges for the standardized reporting of NGS HLA genotyping: Surveying gaps between clinical and research laboratories

    No full text
    Next generation sequencing (NGS) is being applied for HLA typing in research and clinical settings. NGS HLA typing has made it feasible to sequence exons, introns and untranslated regions simultaneously, with significantly reduced labor and reagent cost per sample, rapid turnaround time, and improved HLA genotype accuracy. NGS technologies bring challenges for cost-effective computation, data processing and exchange of NGS-based HLA data. To address these challenges, guidelines and specifications such as Genotype List (GL) String, Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING), and Histoimmunogenetics Markup Language (HML) were proposed to streamline and standardize reporting of HLA genotypes. As part of the 17th International HLA and Immunogenetics Workshop (IHIW), we implemented standards and systems for HLA genotype reporting that included GL String, MIRING and HML, and found that misunderstanding or misinterpretations of these standards led to inconsistencies in the reporting of NGS HLA genotyping results. This may be due in part to a historical lack of centralized data reporting standards in the histocompatibility and immunogenetics community. We have worked with software and database developers, clinicians and scientists to address these issues in a collaborative fashion as part of the Data Standard Hackathons (DaSH) for NGS. Here we report several categories of challenges to the consistent exchange of NGS HLA genotyping data we have observed. We hope to address these challenges in future DaSH for NGS efforts

    Histoimmunogenetics Markup Language 1.0: Reporting next generation sequencing-based HLA and KIR genotyping

    No full text
    We present an electronic format for exchanging data for HLA and KIR genotyping with extensions for next-generation sequencing (NGS). This format addresses NGS data exchange by refining the Histoimmunogenetics Markup Language (HML) to conform to the proposed Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines (miring.immunogenomics.org). Our refinements of HML include two major additions. First, NGS is supported by new XML structures to capture additional NGS data and metadata required to produce a genotyping result, including analysis-dependent (dynamic) and method-dependent (static) components. A full genotype, consensus sequence, and the surrounding metadata are included directly, while the raw sequence reads and platform documentation are externally referenced. Second, genotype ambiguity is fully represented by integrating Genotype List Strings, which use a hierarchical set of delimiters to represent allele and genotype ambiguity in a complete and accurate fashion. HML also continues to enable the transmission of legacy methods (e.g. site-specific oligonucleotide, sequence-specific priming, and Sequence Based Typing (SBT)), adding features such as allowing multiple group-specific sequencing primers, and fully leveraging techniques that combine multiple methods to obtain a single result, such as SBT integrated with NGS

    Histoimmunogenetics Markup Language 1.0: Reporting Next Generation Sequencing-based HLA and KIR Genotyping

    No full text
    AbstractWe present an electronic format for exchanging data for HLA and KIR genotyping with extensions for next-generation sequencing (NGS). This format addresses NGS data exchange by refining the Histoimmunogenetics Markup Language (HML) to conform to the proposed Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines (miring.immunogenomics.org). Our refinements of HML include two major additions. First, NGS is supported by new XML structures to capture additional NGS data and metadata required to produce a genotyping result, including analysis-dependent (dynamic) and method-dependent (static) components. A full genotype, consensus sequence, and the surrounding metadata are included directly, while the raw sequence reads and platform documentation are externally referenced. Second, genotype ambiguity is fully represented by integrating Genotype List Strings, which use a hierarchical set of delimiters to represent allele and genotype ambiguity in a complete and accurate fashion. HML also continues to enable the transmission of legacy methods (e.g. site-specific oligonucleotide, sequence-specific priming, and Sequence Based Typing (SBT)), adding features such as allowing multiple group-specific sequencing primers, and fully leveraging techniques that combine multiple methods to obtain a single result, such as SBT integrated with NGS

    Minimum information for reporting next generation sequence genotyping (MIRING): Guidelines for reporting HLA and KIR genotyping via next generation sequencing

    Get PDF
    AbstractThe development of next-generation sequencing (NGS) technologies for HLA and KIR genotyping is rapidly advancing knowledge of genetic variation of these highly polymorphic loci. NGS genotyping is poised to replace older methods for clinical use, but standard methods for reporting and exchanging these new, high quality genotype data are needed. The Immunogenomic NGS Consortium, a broad collaboration of histocompatibility and immunogenetics clinicians, researchers, instrument manufacturers and software developers, has developed the Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines. MIRING is a checklist that specifies the content of NGS genotyping results as well as a set of messaging guidelines for reporting the results. A MIRING message includes five categories of structured information – message annotation, reference context, full genotype, consensus sequence and novel polymorphism – and references to three categories of accessory information – NGS platform documentation, read processing documentation and primary data. These eight categories of information ensure the long-term portability and broad application of this NGS data for all current histocompatibility and immunogenetics use cases. In addition, MIRING can be extended to allow the reporting of genotype data generated using pre-NGS technologies. Because genotyping results reported using MIRING are easily updated in accordance with reference and nomenclature databases, MIRING represents a bold departure from previous methods of reporting HLA and KIR genotyping results, which have provided static and less-portable data. More information about MIRING can be found online at miring.immunogenomics.org
    corecore