3,934 research outputs found
Clean Energy Infrastructure Educational Initiative
The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master\u27s program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for ensuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master\u27s Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master\u27s Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify new research in the renewable and clean energy area. The educational outreach provided as a result of the grant included activities to introduce renewable and clean energy design projects into the Mechanical and Materials Engineering senior design class, the development of a geothermal energy demonstration unit, and the development of renewable energy learning modules for high school students. Finally, this grant supported curriculum development by Sinclair Community College for seven new courses and acquisition of necessary related instrumentation and laboratory equipment. These new courses, EGV 1201 Weatherization Training, EGV 1251 Introduction to Energy Management Principles, EGV 2301 Commercial and Industrial Assessment, EGV 2351 LEED Green Associate Exam Preparation, EGV 2251 Energy Control Strategies, EGV Solar Photovoltaic Design and Installation, and EGV Solar Thermal Systems, enable Sinclair to offer complete Energy Technology Certificate and an Energy Management Degree programs. To date, 151 students have completed or are currently registered in one of the seven courses developed through this grant. With the increasing interest in the Energy Management Degree program, Sinclair has begun the procedure to have the program approved by the Ohio Board of Regents
The economic impact of Trans-Pacific partnership: What have we learned from CGE simulation?
The Trans-Pacific-Partnership (TPP) trade agreement, if successfully implemented, will liberalize trade between the US, Japan and ten other Asia-Pacific economies, making it one of the largest regional agreements ever seen. The prospect of a comprehensive trade agreement spanning the Pacific raises a number of important quantitative questions. One of the most widely used techniques for evaluating the economic impact of regional trading agreements is numerical simulation with computable general equilibrium, or CGE, models. There have now been a large number of papers written that use CGE methods to analyze the potential economic impact of the TPP agreement under varying theoretical and policy assumptions. In this paper we provide a synthesis of the key results that have emerged from the literature, and discuss some new simulation results of our own
Capacity and reliability of LVL beams manufactured from juvenile hardwood plantation logs
This paper summarises parts of the research outcomes of a university-government collaborative project aiming at determining the capacity and reliability of veneer-based structural products manufactured from early to midrotation (juvenile) hardwood plantations logs. Two species planted for solid timber end-products (Eucalyptus cloeziana and Corymbia citriodora) and one species traditionally grown for pulpwood (Eucalyptus globulus) were studied for the manufacture of the new products. Focus of this paper is on LVL beams. To cost-effectively determine the nominal design bending strengths of the new beams, a numerical model was developed. The model was found to accurately predict the strength of LVL beams with an average predicted to experimental ratio of 1.00 with a low coefficient of variation of 0.10. Using an established probabilistic database of the material properties of the veneered resources as model input, Monte-Carlo simulations were then performed. The design strength of the new LVL beams was established and found to be comparable to, and in some cases up to 2.5 times higher than, the ones of commercially available softwood products. Recommendations are also made in the paper on the appropriate capacity factors to be used for various service categories of structures. The proposed capacity factors were found to be 5% to 12% lower than the ones currently used in Australia for beams manufactured from mature softwood logs
Capacity and reliability of LVL beams manufactured from juvenile hardwood plantation logs
This paper summarises parts of the research outcomes of a university-government collaborative project aiming at determining the capacity and reliability of veneer-based structural products manufactured from early to midrotation (juvenile) hardwood plantations logs. Two species planted for solid timber end-products (Eucalyptus cloeziana and Corymbia citriodora) and one species traditionally grown for pulpwood (Eucalyptus globulus) were studied for the manufacture of the new products. Focus of this paper is on LVL beams. To cost-effectively determine the nominal design bending strengths of the new beams, a numerical model was developed. The model was found to accurately predict the strength of LVL beams with an average predicted to experimental ratio of 1.00 with a low coefficient of variation of 0.10. Using an established probabilistic database of the material properties of the veneered resources as model input, Monte-Carlo simulations were then performed. The design strength of the new LVL beams was established and found to be comparable to, and in some cases up to 2.5 times higher than, the ones of commercially available softwood products. Recommendations are also made in the paper on the appropriate capacity factors to be used for various service categories of structures. The proposed capacity factors were found to be 5% to 12% lower than the ones currently used in Australia for beams manufactured from mature softwood logs
Treatment with exenatide once weekly or twice daily for 30 weeks is associated with changes in several cardiovascular risk markers
Background Dyslipidemia and type 2 diabetes are two of the most significant risk factors for the development of cardiovascular disease. Measurement of lipoprotein subclasses provides important information about derangements in lipid metabolism and helps refine cardiovascular risk assessment. Exenatide, a glucagon-like peptide 1 receptor agonist, improved glycemic control, obesity, hypertension, and dyslipidemia in patients with type 2 diabetes in clinical trials. Methods In the DURATION-1 trial, patients with type 2 diabetes were treated with exenatide once weekly or twice daily for 30 weeks. This post hoc analysis evaluated the impact of exenatide on lipoprotein subclasses in 211 DURATION-1 patients using vertical auto profile methodology and the Statistical Package for the Social Sciences general linear model adjusted for glycosylated hemoglobin (HbA1c) and weight. Results Baseline lipids and high sensitivity C-reactive protein were normal overall based on the standard lipid panel. Once-weekly exenatide reduced apolipoprotein B and the apolipoprotein B to apolipoprotein A1 ratio (P \u3c 0.05), independent of glycemic improvement and weight loss. A significant shift in lipoprotein pattern away from small, dense low-density lipoprotein-4 cholesterol was also observed (P \u3c 0.05). Exenatide once weekly increased high-density lipoprotein-2 cholesterol, even after adjustment for changes in HbA1c and weight (P \u3c 0.05). Triglycerides, very low-density lipoprotein cholesterol, and high sensitivity C-reactive protein were reduced with both the once-weekly and twice-daily exenatide regimens (P \u3c 0.05). Conclusion In this post hoc analysis, exenatide significantly improved a number of cardiovascular risk markers. Continuous exenatide exposure with exenatide once weekly elicited a greater response than did immediate-release exenatide twice daily, generally independent of glycemic improvement and weight loss. Thus, in addition to improving glycemic control, exenatide induced favorable changes in lipid and lipoprotein metabolism and decreased systemic inflammation
On the mechanical modeling of cell components
Eukaryotic cells are complex systems which carry out a variety of different tasks. The current contribution gives insight into the modeling of some of their vital components and represents an overview of results achieved within the international D‐A‐CH project on computational modeling of transport processes in a cell. The first part of the contribution studies viscoelastic effects of cross‐linked actin network embedded in cytosol. The basic‐model is used to simulate the actin behavior at a microscopic level. It considers the influence of the physical length, the end‐to‐end distance and the stretch modulus in order to provide a relationship between the stretch of a single polymer chain and the applied tension force. The effective behavior of the cell cytoplasm is simulated by using the multiscale finite element method. Here, a standard large strain viscous approach is applied for the cytosol, while the generalized Maxwell model simulates viscous effects occurring in filaments due to deviatoric changes. The examples dealing with combinations of tension‐holding tests give insight into the effective behavior of the cytoplasm
Influence of the moisture content on the fracture energy and tensile strength of hardwood spotted gum sawn timber and adhesive bonds (gluelines)
This study aims to measure the fracture properties, including crack initiation and propagation, of Australia’s native forest grown spotted gum ([SPG], Corymbia citriodora) sawn timber and associated adhesive bonds at different moisture content levels. The collected data were used as input values to develop a numerical model to understand the delamination of SPG glulam beams when exposed to a wetting and drying process. Thus, Mode I and Mode II fracture energies for crack propagation along radial and glueline directions were experimentally investigated under various moisture content levels (8%, 12% and 16%). Single-end notched beams and compact shear specimens were used to capture the Mode I and Mode II fracture energies, respectively. For crack initiation, the tensile strength perpendicular to the grain and the shear strength (taken as the maximum stress from the Mode II fracture tests) were also measured. In total, 200 experimental tests were performed. One-way analysis of variance statistical analyses showed that the fracture energies and shear strengths were independent of the range of moisture content levels investigated. In addition, the collected data were compared with the limited published fracture properties of other hardwood species
555. Development of a Post-Exposure Treatment for Ebola Virus Infections Based on AAV Vectors and Zmapp Antibody Cocktail
The recent Ebola outbreak in West Africa has been the deadliest in the history. To prevent future recurrence of such outbreak, better treatments and effective vaccines against Ebola virus are desirable. Among such promising treatments, the Zmapp cocktail containing neutralizing antibodies (13C6, 2G4 and 4G7) has successfully treated some patients. However, the feasibility of using it on large populations especially in developing countries is questionable. To address this potential issue, we propose to employ recombinant vectors derived from adeno-associated virus (rAAV). There are several advantages of using rAAV: because of 1) their safety profile; 2) only one injection (or a few) would be required; 3) the high stability of lyophilized rAAVs at ambient temperature and; 4) the panel of available serotypes. Because of these interesting features, we are currently developing a treatment based on three rAAVs to deliver the genes for the Zmapp cocktail of antibodies. We have already produced at small scale a rAAV expressing the 2G4 antibody. The DNA sequences for the heavy chain and light chains were codon-optimized for better expression in humans and were designed to be expressed from the same gene. A strong promoter (CAG) resistant to silencing in vivo was chosen to drive gene expression of the antibody. The rAAV were produced by transfection using our patented cGMP compatible HEK293 cell line. The production was performed in suspension culture in the absence of serum. Secretion of 2G4 antibody by rAAV transduced cells (HEK293 and CHO cells) was confirmed. The results demonstrated that rAAV-CAG-2G4 was functional and allowed for the correct assembly of the heavy and light chains of 2G4. Purification of 200 mL of rAAV-CAG-2G4 production was performed by ultracentrifugation on an iodixanol density-step gradient. Two other rAAVs coding 13C6 and 4G7 antibodies are in the processed of being constructed and produced in a similar manner. We are also in the process of comparing the efficacy of two serotypes of AAV (9 and DJ) in mice by intranasal delivery. Using the best serotype, the rAAVs will be produced and purified from a starting suspension culture of 20 L. Their efficacy for treating Ebola infections will then be evaluated in a mouse model infected by the virus
Barriers to the Effective Adhesion of High-Density Hardwood Timbers for Glue-Laminated Beams in Australia
A number of international timbers of high commercial importance are extremely difficult to glue, which is significantly hindering access to global market opportunities for engineered wood products, especially for heavily demanded structural products. Some particularly problematic timbers in Australia are the dominant commercial hardwood species, including spotted gum (Corymbia spp.) and Darwin stringybark (Eucalyptus tetrodonta). These species are renowned for their very high mechanical properties, natural durability and attractive aesthetic appeal. However, they are notoriously difficult to glue, especially for sawn laminate-based engineered wood products, such as structural glue-laminated beams. Despite considerable effort and testing of diverse internationally established best-practice approaches to improve adhesion, glue-laminated beam samples of these timbers still frequently fail to meet the requirements of the relevant standard, mainly due to excessive glue line delamination. This paper discusses the key barriers to effective adhesion of these high-density timbers and particularly emphasises the necessity of achieving greater adhesive penetration. Greater adhesive penetration is required to enhance mechanical interlocking, entanglement and molecular interactions between the adhesive and the wood to achieve stronger and more durable bonds. Potential solutions to enhance adhesive penetration, as well as to improve gluability in general, are discussed in terms of their likelihood to satisfactorily prevent delamination and the potential to be applied at an industrial scale. This new fundamental understanding will assist the development of solutions, allowing industry to commercialise newly engineered wood products made from high-density timbers
- …