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Eukaryotic cells are complex systems which carry out a variety of different tasks. The current contribution gives insight into
the modeling of some of their vital components and represents an overview of results achieved within the international D-A-
CH project on computational modeling of transport processes in a cell. The first part of the contribution studies viscoelastic
effects of cross-linked actin network embedded in cytosol. The basic-model is used to simulate the actin behavior at a
microscopic level. It considers the influence of the physical length, the end-to-end distance and the stretch modulus in order
to provide a relationship between the stretch of a single polymer chain and the applied tension force. The effective behavior of
the cell cytoplasm is simulated by using the multiscale finite element method. Here, a standard large strain viscous approach
is applied for the cytosol, while the generalized Maxwell model simulates viscous effects occurring in filaments due to
deviatoric changes. The examples dealing with combinations of tension-holding tests give insight into the effective behavior
of the cytoplasm.
The second part of the talk deals with the viral entry into a cell driven by the receptor motion. In the model developed, the
receptor motion is described by the diffusion equation along with two boundary conditions. The first condition represents the
balance of fluxes at the front of the contact area. To this end, the velocity is assumed to be proportional to the gradient of
the chemical potential. The second condition deals with the energy balance and postulates that the difference in the energy
behind and before the front causes the front’s movement. The important energy contributions are energy due to the binding
of receptors, the free energy of the membrane, the bending energy and the kinetic energy due to the motion of the receptors.
The model yields a well-posed moving boundary problem, which is numerically solved using the finite difference method.
The change of receptor density over the membrane as well as the motion of the front of the adhesion zone is studied in the
numerical simulations.

© 2021 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH

1 Structure of the cytoplasm

Cytosol and cytoskeleton are two components of a cell which play an important role for its mechanical response. Cytosol is a
gel-like material, whereas the cytoskeleton is a network, consisting of three types of elements: actin filaments, microtubules
and intermediate filaments. The first part of the present contribution focuses on the study of the actin filament network
embedded in the cytosol. Depending on its location, actin can comprise up to 10% of the cellular protein. A large amount
of actin is present in the cells as globular monomer which polymerizes to filamentous actin. It is one of the proteins driving
motility, protrusion and cell division. Being too stiff to form loops but flexible enough to exhibit thermal bending, actin
filaments belong to the group of semi-flexible biopolymers.

2 Viscoelastic material model for the actin filament

The Holzapfel-Ogden β-model [1, 2] is assumed as the basis for the simulation of actin filaments. It provides a relationship
between its arc-length L and its end-to-end distance r, i.e.

r

L
= 1 + α f∗ − (1 + 2α f∗) (1 + α f∗)β

[1 + f∗ + α(f∗)2]
β

(
1− r0

L

)
. (1)

Here, r0 denotes the end-to-end distance at zero force and the exponent β is addressed as the effective extensional modulus.
The dimensionless stiffness α = π2 B0

µ0 L2 is expressed in terms of the stretch modulus µ0 and the bending stiffness B0 = E I ,
where E is the Young’s modulus and I is the area moment of inertia. The dimensionless force is defined according to
f∗ = f

αµ0
. In this model, no explicit formulation for the potential of the external force is assumed. However, the derivatives

Ψ′ = Ψ′(f∗) and Ψ′′ = Ψ′′(f∗) of the potential can be calculated depending on the dimensionless force f∗, which is
numerically calculated from Eq. (1).
Based on the previously described model, a new 2-node line element has been developed [1]. The position of an arbitrary
point, belonging to such an element, is expressed asXe = Xe1 + X̃

e
R in the reference configuration and as xe = xe1 + x̃et
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in the current configuration. Here,Xe1, X̃
e

andR are the positions of the starting node, the distance from the starting node to
the arbitrary point and the unit direction vector in the reference configuration, whereas xe1, x̃e and t are the respective values
in the current configuration. A special feature of the model chosen is that the deformation gradient F as well as the Cauchy
stress tensor σ and the first and second Piola-Kirchhoff stress tensors P , S are expressed depending on the corresponding
scalar values and dyadic products of two direction vectors as follows

F = λ t⊗R, σ = σ t⊗ t, P = P t⊗R, S = SR⊗R, (2)

where λ is the stretch and σ, P and S are scalar values which are functions of the derivative Ψ′(f∗).
The second step of the FE-implementation is concerned with the formulation of the residual vector and the stiffness matrix.
The common definition for the virtual internal work δΠe

int =
∫
V e P : δF dV is directly used to define the internal forces

f eA
int =

∫
V e P · ∇XN

AdV . Furthermore, the stiffness matrix is obtained from the derivative

KeAB
int =

df eA
int

dxeB = 4
Ae

Le

∂P

∂λ

∂NA

∂ξ
t⊗ t∂N

B

∂ξ
+ 4

Ae

le
P
∂NA

∂ξ
(I − t⊗ t)∂N

B

∂ξ
. (3)

The previous relationship depends on linear shape functions NA(ξ), A = 1,2, variable ξ ∈ [-1,1], the element length in
the current configuration le, the respective element length in the reference configuration Le and the cross sectional area Ae.
The general framework (Eq. (3)) is coupled to the material law (Eq. (1)) through the relationships Ψ′f = A0λ0r0P and
Ψ′′f = A0λ0r0

∂P
∂λ .

Finally, the model is enhanced by implementing viscous effects using the Maxwell model as the basis. According to this
model, the non-equilibrium stress tensor Qv is introduced as an additional term. This term has the same structure as the
second Piola-Kirchhoff tensorQv = Q̃vR⊗R such that the total stress reads

S̃ = S +Qv =
(
S + Q̃v

)
R⊗R = S̃R⊗R, S̃ =

Ψ′f
λλ0A0

+ Q̃v. (4)

The constitutive model is completed by coupling the evolution of the viscous part Qv to the evolution of the elastic stresses
Q̇

v
+ Qv

τv = θv Ṡ, where τv is the relaxation time and θv the non-dimensional free-energy parameter.

3 Effective behavior of the cytoplasm

The application of the model is illustrated by a representative numerical example which is shown in Fig. 1 a). The multiscale
finite element method (FEM) [3] is applied for this purpose. On the macroscopic level, a plate with dimensions of 100×100 µm
is modeled. The representative volume element (RVE) has a square form with the side length 10× 10 µm. The RVE includes
440 triangular elements simulating the cytosol and 668 line elements simulating the actin filaments. Material parameters of
the cytosol are assumed as follows: Ec = 20 kPa, νc = 0.45, τc = 2 s and µc = 0.1. Material parameters of the filaments are
µ0 = 38.6 nN, λ0 = 1.027, β = 0.438, α = 10−7, τv = 2 s and θv = 0.835.

b) c)a)

Fig. 1: a) Geometry and discretization of the plate. b) Geometry and discretization of the representative volume element. c) Deformation of
the homogeneous cytosol compared to the deformation of the heterogeneous cytoplasm including the cytosol and actin filament network.

The upper edge of the macroscopic sample is firstly loaded by a constant distributed load of 5 kPa. In a second stage, the
load is removed. Fig. 1 c) shows that the displacements grow and gradually achieve a stationary value during the loading
stage. After the unloading, an elastic jump in displacements occurs and deformation gradually shrinks to zero. The same
test is performed for a homogeneous material solely consisting of cytosol. A comparison shows that the displacements in the
heterogeneous material are smaller than in the homogeneous material because of the strengthening effect of the filaments.
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4 Numerical simulation of the viral entry into a cell

The second part of the present contribution focuses on the viral entry through the cells membrane. One of the main mechanisms
used by viruses in order to enter a cell is receptor driven endocytosis [4]. During this process the virus connects its receptors
to the receptors of the cell. This causes the cell membrane to bend and to build a vesicle around the virus. The process is
characterized by the ability of the receptors of the cell to move freely within its membrane, while the receptors of the virus are
fixed and occur with a much higher density. Upon contact, the virus dictates the required receptor density for bonding, thus
causing the receptors of the cell to move towards the contact area. As a consequence, the contact area grows while the local
receptor density of the cell changes, resulting in a moving boundary problem.

5 Endocytosis as a moving boundary problem

At the beginning of the process a virus connects to the cell and splits the cell membrane into two areas separated by an
adhesion front. These two areas are characterized by the distribution of the receptor density ξ(x, t). In the contact area the cell
receptor density matches the constant receptor density of the virus ξ(x, t) = ξeq. In the area in front of the adhesion zone the
density is a function of position and time ξ(x, t) with its minimum at the adhesion front, where ξ(x, t) = ξ+. Since the cell
size is orders of magnitudes larger than the virus size, the density profile remains unchanged far away from the contact area
lim
x→∞

ξ(x, t) = ξ0. The motion of the receptors on the cell surface is based on the diffusion differential equation depending on
the mobility m, i.e.

∂ξ

∂t
= m

∂2ξ

∂x2
. (5)

A solution of this partial differential equation requires additional boundary conditions. The conservation of binders is con-
sidered first. It states that the amount of receptors required for the advancement of the adhesion front has to be equal to
the amount of receptors provided by the flux. Following Fick’s first law, the diffusion equation leads to the first boundary
condition

(ξeq − ξ+) v+ −m
[
∂ξ

∂x

]

+

= 0, (6)

which depends on quantities related to the adhesion front [5]. Here, v+ denotes the velocity of the front. For the second
boundary condition an approach considering the energetic aspects of the front motion is chosen [6]. The front movement,
represented by the kinetic energy Ekin = 1

2 k T ξeq v
2
+ is caused by the difference in the energy in front of and behind the front,

each consisting of several contributions denoted by superscript "−" behind the front and superscript "+" in front of the front.
Thus,

E−b + E−e + E−κ − E+
e + E+

v = Ekin. (7)

Behind the front, E−b = −k T Cb ξeq denotes a reduction in the free energy due to the binding of receptors, with k being the

Boltzmann constant, T the absolute temperature and Cb a reduction factor. The term E−e = k T ξeq ln
(
ξeq

ξ0

)
represents the

energy associated with the entropy of receptors. Here, the initial binder density ξ0 is adopted as a reference value. The term
E−κ = 1

2 k TB κ
2 represents the energy related with bending, where κ is the curvature of the membrane and where B is the

bending stiffness. In front of the front E+
e = k T ξ+ln

(
ξ+
ξ0

)
represents the energy associated with the entropy of receptors.

The term E+
v = 1

2 k T ξ+ v
2
r represents the kinetic energy of the receptors in front of the front moving towards the adhesion

area, with vr being their corresponding velocity. Finally, the second boundary condition is expressed in terms of the receptor
density ξ(x, t) and the front velocity v+ by

[
−ξeq Cb + ξeq ln

(
ξeq

ξ0

)
+

1

2
Bκ2

]
−
[
ξ+ln

(
ξ+
ξ0

)
+

1

2
k T ξ+ v

2
r

]
=

[
1

2
ξeq v

2
+

]
. (8)

The corresponding non-linear system of equations is implemented by using the finite difference method and is solved numer-
ically by a Newton Raphson scheme.

6 Numerical simulation of the virus uptake

The chosen numerical example simulates the uptake of a spherical virus treated as a 1D problem. The evolution of the
receptor profile of the cell as well as the motion of the adhesion front are shown in Fig. 2. At the beginning of the process, the
receptor density at the front experiences a strong decrease which weakens as the time progresses. The adhesion front advances
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continuously during the whole process, while its velocity decreases towards a limit value. The numerical results are strongly
influenced by the mobility parameter m which measures how fast the cell can provide receptors to the adhesion zone. Further
important factors are the initial receptor density on the virus and on the cell membranes [6].
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Fig. 2: Receptor density over the cell surface when the virus has entered the cell by 25%, 50%, 75% and 100%. Chosen process parameters
are m = 1µm2/s, Cb = 5, B = 30, ξeq = 4800 1/µm2, ξ+ = 1000 1/µm2, virus diameter D = 0.05µm.

7 Conclusion

The first part of this contribution deals with the simulation of the effective behavior of the actin filament network embedded
into cytosol. Attention is especially paid to the viscous effects which are introduced by the Maxwell model. The application
of the model is illustrated by an example comparing the viscoelastic with the purely elastic behavior. The results show that
the reinforcing effect of the actin filaments have a high impact on viscous effects compared to a homogeneous sample. A
comprehensive comparison of the results with the experimental observation is envisaged as a topic of a future work. The
second part of the present study focuses on the simulation of the influence of the binder mobility in the viral entry driven by
receptor diffusion. The process is described by a diffusion differential equation accompanied by two boundary conditions.
The two boundary conditions describe the flux balance and the energy balance at the adhesion front. The proposed moving
boundary problem enables an efficient numerical simulation of the process and provides the basis for the consideration of
additional relevant aspects. Bending of the cell in front of the adhesion front and an alternative expression for bending lipid
bilayers are envisaged as topics of our future work.
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