9 research outputs found

    Dynamic simulations on the mitochondrial fatty acid Beta-oxidation network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The oxidation of fatty acids in mitochondria plays an important role in energy metabolism and genetic disorders of this pathway may cause metabolic diseases. Enzyme deficiencies can block the metabolism at defined reactions in the mitochondrion and lead to accumulation of specific substrates causing severe clinical manifestations. Ten of the disorders directly affecting mitochondrial fatty acid oxidation have been well-defined, implicating episodic hypoketotic hypoglycemia provoked by catabolic stress, multiple organ failure, muscle weakness, or hypertrophic cardiomyopathy. Additionally, syndromes of severe maternal illness (HELLP syndrome and AFLP) have been associated with pregnancies carrying a fetus affected by fatty acid oxidation deficiencies. However, little is known about fatty acids kinetics, especially during fasting or exercise when the demand for fatty acid oxidation is increased (catabolic stress).</p> <p>Results</p> <p>A computational kinetic network of 64 reactions with 91 compounds and 301 parameters was constructed to study dynamic properties of mitochondrial fatty acid β-oxidation. Various deficiencies of acyl-CoA dehydrogenase were simulated and verified with measured concentrations of indicative metabolites of screened newborns in Middle Europe and South Australia. The simulated accumulation of specific acyl-CoAs according to the investigated enzyme deficiencies are in agreement with experimental data and findings in literature. Investigation of the dynamic properties of the fatty acid β-oxidation reveals that the formation of acetyl-CoA – substrate for energy production – is highly impaired within the first hours of fasting corresponding to the rapid progress to coma within 1–2 hours. LCAD deficiency exhibits the highest accumulation of fatty acids along with marked increase of these substrates during catabolic stress and the lowest production rate of acetyl-CoA. These findings might confirm gestational loss to be the explanation that no human cases of LCAD deficiency have been described.</p> <p>Conclusion</p> <p>In summary, this work provides a detailed kinetic model of mitochondrial metabolism with specific focus on fatty acid β-oxidation to simulate and predict the dynamic response of that metabolic network in the context of human disease. Our findings offer insight into the disease process (e.g. rapid progress to coma) and might confirm new explanations (no human cases of LCAD deficiency), which can hardly be obtained from experimental data alone.</p

    Dynamic simulations on the mitochondrial fatty acid Beta-oxidation network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The oxidation of fatty acids in mitochondria plays an important role in energy metabolism and genetic disorders of this pathway may cause metabolic diseases. Enzyme deficiencies can block the metabolism at defined reactions in the mitochondrion and lead to accumulation of specific substrates causing severe clinical manifestations. Ten of the disorders directly affecting mitochondrial fatty acid oxidation have been well-defined, implicating episodic hypoketotic hypoglycemia provoked by catabolic stress, multiple organ failure, muscle weakness, or hypertrophic cardiomyopathy. Additionally, syndromes of severe maternal illness (HELLP syndrome and AFLP) have been associated with pregnancies carrying a fetus affected by fatty acid oxidation deficiencies. However, little is known about fatty acids kinetics, especially during fasting or exercise when the demand for fatty acid oxidation is increased (catabolic stress).</p> <p>Results</p> <p>A computational kinetic network of 64 reactions with 91 compounds and 301 parameters was constructed to study dynamic properties of mitochondrial fatty acid β-oxidation. Various deficiencies of acyl-CoA dehydrogenase were simulated and verified with measured concentrations of indicative metabolites of screened newborns in Middle Europe and South Australia. The simulated accumulation of specific acyl-CoAs according to the investigated enzyme deficiencies are in agreement with experimental data and findings in literature. Investigation of the dynamic properties of the fatty acid β-oxidation reveals that the formation of acetyl-CoA – substrate for energy production – is highly impaired within the first hours of fasting corresponding to the rapid progress to coma within 1–2 hours. LCAD deficiency exhibits the highest accumulation of fatty acids along with marked increase of these substrates during catabolic stress and the lowest production rate of acetyl-CoA. These findings might confirm gestational loss to be the explanation that no human cases of LCAD deficiency have been described.</p> <p>Conclusion</p> <p>In summary, this work provides a detailed kinetic model of mitochondrial metabolism with specific focus on fatty acid β-oxidation to simulate and predict the dynamic response of that metabolic network in the context of human disease. Our findings offer insight into the disease process (e.g. rapid progress to coma) and might confirm new explanations (no human cases of LCAD deficiency), which can hardly be obtained from experimental data alone.</p

    BMC Medical Informatics and Decision Making / Readiness to use telemonitoring in diabetes care: a cross-sectional study among Austrian practitioners

    No full text
    Background Telemonitoring services could dramatically improve the care of diabetes patients by enhancing their quality of life while decreasing healthcare expenditures. However, the potential for implementing innovative treatment options in the Austrian public and private health system is not known yet. Thus, we analyzed the readiness to use telemonitoring in diabetes care among Austrian practitioners. Methods We conducted an online survey among a purposive sample of Austrian practitioners (n = 41) using an adapted German version of the practitioner telehealth readiness assessment tool. We assessed three readiness domains for telemonitoring in the context of diabetes care, i.e. core readiness, engagement readiness, and structural readiness, and validated the German tool using principal components analysis. Results Study subjects perceived themselves as open to innovations and also expressed optimistic attitudes towards telemonitoring in general and offering telemonitoring-based services for their patients. Participants achieved a medium average readiness level for telemonitoring (58.2, 95% CI 53.962.5) and were thus in a good position to use telemonitoring, although some arguments may adversely affected its use. The top three perceived benefits of telemonitoring were enhanced quality of treatment, better therapy adjustment, and reduced travel and waiting times for patients. The top three barriers were reduced personal communication, practitioner time expenditure and equally placed poor financial compensation as well as data security and privacy issues. Conclusion Our data revealed that Austrian practitioners showed a quite moderate readiness to use telemonitoring in diabetes care. To further advance telemonitoring readiness among all pillars of diabetes care in Austria, joint efforts among healthcare stakeholders are required to overcome existing financial, organizational, and technical obstacles.(VLID)488926
    corecore