269 research outputs found

    A mock circulation loop to test extracorporeal CO2 elimination setups

    Get PDF
    Background: Extracorporeal carbon dioxide removal (ECCO2R) is a promising yet limited researched therapy for hypercapnic respiratory failure in acute respiratory distress syndrome and exacerbated chronic obstructive pulmonary disease. Herein, we describe a new mock circuit that enables experimental ECCO2R research without animal models. In a second step, we use this model to investigate three experimental scenarios of ECCO2R: (I) the influence of hemoglobin concentration on CO2 removal. (II) a potentially portable ECCO2R that uses air instead of oxygen, (III) a low-flow ECCO2R that achieves effective CO2 clearance by recirculation and acidification of the limited blood volume of a small dual lumen cannula (such as a dialysis catheter). Results: With the presented ECCO2R mock, CO2 removal rates comparable to previous studies were obtained. The mock works with either fresh porcine blood or diluted expired human packed red blood cells. However, fresh porcine blood was preferred because of better handling and availability. In the second step of this work, hemoglobin concentration was identified as an important factor for CO2 removal. In the second scenario, an air-driven ECCO2R setup showed only a slightly lower CO2 wash-out than the same setup with pure oxygen as sweep gas. In the last scenario, the low-flow ECCO2R, the blood flow at the test membrane lung was successfully raised with a recirculation channel without the need to increase cannula flow. Low recirculation ratios resulted in increased efficiency, while high recirculation ratios caused slightly reduced CO2 removal rates. Acidification of the CO2 depleted blood in the recirculation channel caused an increase in CO2 removal rate. Conclusions: We demonstrate a simple and cost effective, yet powerful, “in-vitro” ECCO2R model that can be used as an alternative to animal experiments for many research scenarios. Moreover, in our approach parameters such as hemoglobin level can be modified more easily than in animal models

    Exposure of patients to di(2-ethylhexy)phthalate (DEHP) and its metabolite MEHP during extracorporeal membrane oxygenation (ECMO) therapy

    Get PDF
    The plasticizer di(2-ethylhexyl)phthalate (DEHP) is often used for PVC medical devices, that are also largely used for intensive care medical treatments, like extracorporeal membrane oxygenation (ECMO) therapy. Due to the toxicological potential of DEHP, the inner exposure of patients with this plasticizer is a strong matter of concern as many studies have shown a high leaching potential of DEHP into blood. In this study, the inner DEHP exposure of patients undergoing ECMO treatment was investigated. The determined DEHP blood levels of ECMO patients and the patients of the control group ranged from 31.5 to 1009 ÎŒg/L (median 156.0 ÎŒg/L) and from 19.4 to 75.3 ÎŒg/L (median 36.4 ÎŒg/L), respectively. MEHP blood levels were determined to range from < LOD to 475 ÎŒg/L (median 15.9 ÎŒg/L) in ECMO patients and from < LOD to 9.9 ÎŒg/L (median 3.7 ÎŒg/L) in the control group patients, respectively. Increased DEHP exposure was associated with the number of cannulas and membranes of the ECMO setting, whereas residual diuresis decreased the exposure. Due to the suspected toxicological potential of DEHP, its use in medical devices should be further investigated, in particular for ICU patients with long-term exposure to PVC, like in ECMO therapy

    Comparison of Serial and Parallel Connections of Membrane Lungs against Refractory Hypoxemia in a Mock Circuit

    Get PDF
    Extracorporeal membrane oxygenation (ECMO) is an important rescue therapy method for the treatment of severe hypoxic lung injury. In some cases, oxygen saturation and oxygen partial pressure in the arterial blood are low despite ECMO therapy. There are case reports in which patients with such instances of refractory hypoxemia received a second membrane lung, either in series or in parallel, to overcome the hypoxemia. It remains unclear whether the parallel or serial connection is more effective. Therefore, we used an improved version of our full-flow ECMO mock circuit to test this. The measurements were performed under conditions in which the membrane lungs were unable to completely oxygenate the blood. As a result, only the photometric pre- and post-oxygenator saturations, blood flow and hemoglobin concentration were required for the calculation of oxygen transfer rates. The results showed that for a pre-oxygenator saturation of 45% and a total blood flow of 10 L/min, the serial connection of two identical 5 L rated oxygenators is 17% more effective in terms of oxygen transfer than the parallel connection. Although the idea of using a second membrane lung if refractory hypoxia occurs is intriguing from a physiological point of view, due to the invasiveness of the solution, further investigations are needed before this should be used in a wider clinical setting

    Respiratory Physiology of COVID-19 and Influenza Associated Acute Respiratory Distress Syndrome

    Get PDF
    There is ongoing debate whether lung physiology of COVID-19-associated acute respiratory distress syndrome (ARDS) differs from ARDS of other origin. Objective: The aim of this study was to analyze and compare how critically ill patients with COVID-19 and Influenza A or B were ventilated in our tertiary care center with or without extracorporeal membrane oxygenation (ECMO). We ask if acute lung failure due to COVID-19 requires different intensive care management compared to conventional ARDS. Methods: 25 patients with COVID-19-associated ARDS were matched to a cohort of 25 Influenza patients treated in our center from 2011 to 2021. Subgroup analysis addressed whether patients on ECMO received different mechanical ventilation than patients without extracorporeal support. Results: Compared to Influenza-associated ARDS, COVID-19 patients had higher ventilatory system compliance (40.7 mL/mbar [31.8–46.7 mL/mbar] vs. 31.4 mL/mbar [13.7–42.8 mL/mbar], p = 0.198), higher ventilatory ratio (1.57 [1.31–1.84] vs. 0.91 [0.44–1.38], p = 0.006) and higher minute ventilation at the time of intubation (mean minute ventilation 10.7 L/min [7.2–12.2 L/min] for COVID-19 vs. 6.0 L/min [2.5–10.1 L/min] for Influenza, p = 0.013). There were no measurable differences in P/F ratio, positive end-expiratory pressure (PEEP) and driving pressures (∆P). Respiratory system compliance deteriorated considerably in COVID-19 patients on ECMO during 2 weeks of mechanical ventilation (Crs, mean decrease over 2 weeks −23.87 mL/mbar ± 32.94 mL/mbar, p = 0.037) but not in ventilated Influenza patients on ECMO and less so in ventilated COVID-19 patients without ECMO. For COVID-19 patients, low driving pressures on ECMO were strongly correlated to a decline in compliance after 2 weeks (Pearson’s R 0.80, p = 0.058). Overall mortality was insignificantly lower for COVID-19 patients compared to Influenza patients (40% vs. 48%, p = 0.31). Outcome was insignificantly worse for patients requiring veno-venous ECMO in both groups (50% mortality for COVID-19 on ECMO vs. 27% without ECMO, p = 0.30/56% vs. 34% mortality for Influenza A/B with and without ECMO, p = 0.31). Conclusion: The pathophysiology of early COVID-19-associated ARDS differs from Influenza-associated acute lung failure by sustained respiratory mechanics during the early phase of ventilation. We question whether intubated COVID-19 patients on ECMO benefit from extremely low driving pressures, as this appears to accelerate derecruitment and consecutive loss of ventilatory system compliance

    Comparison of Circular and Parallel-Plated Membrane Lungs for Extracorporeal Carbon Dioxide Elimination

    Get PDF
    Extracorporeal carbon dioxide removal (ECCO2R) is an important technique to treat critical lung diseases such as exacerbated chronic obstructive pulmonary disease (COPD) and mild or moderate acute respiratory distress syndrome (ARDS). This study applies our previously presented ECCO2R mock circuit to compare the CO2 removal capacity of circular versus parallel-plated membrane lungs at different sweep gas flow rates (0.5, 2, 4, 6 L/min) and blood flow rates (0.3 L/min, 0.9 L/min). For both designs, two low-flow polypropylene membrane lungs (Medos Hilte 1000, Quadrox-i Neonatal) and two mid-flow polymethylpentene membrane lungs (Novalung Minilung, Quadrox-iD Pediatric) were compared. While the parallel-plated Quadrox-iD Pediatric achieved the overall highest CO2 removal rates under medium and high sweep gas flow rates, the two circular membrane lungs performed relatively better at the lowest gas flow rate of 0.5 L/min. The low-flow Hilite 1000, although overall better than the Quadrox i-Neonatal, had the most significant advantage at a gas flow of 0.5 L/min. Moreover, the circular Minilung, despite being significantly less efficient than the Quadrox-iD Pediatric at medium and high sweep gas flow rates, did not show a significantly worse CO2 removal rate at a gas flow of 0.5 L/min but rather a slight advantage. We suggest that circular membrane lungs have an advantage at low sweep gas flow rates due to reduced shunting as a result of their fiber orientation. Efficiency for such low gas flow scenarios might be relevant for possible future portable ECCO2R devices

    A Novel Mock Circuit to Test Full-Flow Extracorporeal Membrane Oxygenation

    Get PDF
    Extracorporeal membrane oxygenation (ECMO) has become an important therapeutic approach in the COVID-19 pandemic. The development and research in this field strongly relies on animal models; however, efforts are being made to find alternatives. In this work, we present a new mock circuit for ECMO that allows measurements of the oxygen transfer rate of a membrane lung at full ECMO blood flow. The mock utilizes a large reservoir of heparinized porcine blood to measure the oxygen transfer rate of the membrane lung in a single passage. The oxygen transfer rate is calculated from blood flow, hemoglobin value, venous saturation, and post-membrane arterial oxygen pressure. Before the next measuring sequence, the blood is regenerated to a venous condition with a sweep gas of nitrogen and carbon dioxide. The presented mock was applied to investigate the effect of a recirculation loop on the oxygen transfer rate of an ECMO setup. The recirculation loop caused a significant increase in post-membrane arterial oxygen pressure (paO2 ). The effect was strongest for the highest recirculation flow. This was attributed to a smaller boundary layer on gas fibers due to the increased blood velocity. However, the increase in paO2 did not translate to significant increases in the oxygen transfer rate because of the minor significance of physically dissolved oxygen for gas transfer. In conclusion, our results regarding a new ECMO mock setup demonstrate that recirculation loops can improve ECMO performance, but not enough to be clinically relevant

    Acute Respiratory Distress Syndrome due to Mycoplasma pneumoniae Misinterpreted as SARS-CoV-2 Infection

    Get PDF
    Background. In 2020, a novel coronavirus caused a global pandemic with a clinical picture termed COVID-19, accounting for numerous cases of ARDS. However, there are still other infectious causes of ARDS that should be considered, especially as the majority of these pathogens are specifically treatable. Case Presentation. We present the case of a 36-year-old gentleman who was admitted to the hospital with flu-like symptoms, after completing a half-marathon one week before admission. As infection with SARS-CoV-2 was suspected based on radiologic imaging, the hypoxemic patient was immediately transferred to the ICU, where he developed ARDS. Empiric antimicrobial chemotherapy was initiated, the patient deteriorated further, therapy was changed, and the patient was transferred to a tertiary care ARDS center. As cold agglutinins were present, the hypothesis of an infection with SARS-CoV-2 was then questioned. Bronchoscopic sampling revealed Mycoplasma (M.) pneumoniae. When antimicrobial chemotherapy was adjusted, the patient recovered quickly. Conclusion. Usually, M. pneumoniae causes mild disease. When antimicrobial chemotherapy was adjusted, the patient recovered quickly. The case underlines the importance to adhere to established treatment guidelines, scrutinize treatment modalities, and not to forget other potential causes of severe pneumonia or ARDS

    Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: a prospective, observational single-center study

    Get PDF
    Background: Efective antimicrobial treatment is key to reduce mortality associated with bacterial sepsis in patients on intensive care units (ICUs). Dose adjustments are often necessary to account for pathophysiological changes or renal replacement therapy. Extracorporeal membrane oxygenation (ECMO) is increasingly being used for the treatment of respiratory and/or cardiac failure. However, it remains unclear whether dose adjustments are necessary to avoid subtherapeutic drug levels in septic patients on ECMO support. Here, we aimed to evaluate and comparatively assess serum concentrations of continuously applied antibiotics in intensive care patients being treated with and without ECMO. Methods: Between October 2018 and December 2019, we prospectively enrolled patients on a pneumological ICU in southwest Germany who received antibiotic treatment with piperacillin/tazobactam, ceftazidime, meropenem, or linezolid. All antibiotics were applied using continuous infusion, and therapeutic drug monitoring of serum concentrations (expressed as mg/L) was carried out using high-performance liquid chromatography. Target concentrations were defned as fourfold above the minimal inhibitory concentration (MIC) of susceptible bacterial isolates, according to EUCAST breakpoints
    • 

    corecore