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Doping Nanocrystals and the Role of Quantum Confinement 
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Abstract. Recent progress in developing algorithms for solving the electronic structure problem for nanostructures is 
illustrated. Key ingredients in this approach include pseudopotentials implemented on a real space grid and the use of density 
functional theory. This procedure allows one to predict electronic properties for many materials across the nano-regime, i.e., 
from atoms to nanocrystals of sufficient size to replicate bulk properties. We will illustrate this method for doping silicon 
nanocrystals with phosphorous. 
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INTRODUCTION 

One of the most significant goals in materials physics 
is the development of new algorithms and physical con­
cepts for describing matter at all length scales, especially 
at the nano-scale. This goal has assumed more signifi­
cance in past years owing to interest in the role of quan­
tum confinement, i.e., the physical localization of mate­
rials phenomena at the nano-scale [1]. Quantum confine­
ment offers one opportunity to alter properties of mat­
ter without changing the chemical composition. For ex­
ample, quantum confinement in CdSe nanocrystals can 
be used to tune the optical gap across the visible spec­
trum [2] or Si nanocrystals can be made optically active 
at smaU length scales [3, 4]. 

Predicting the role of quantum confinement and the 
properties of nanostructures is a difficuh task owing to 
the complexity of such systems, which often contain 
thousands of atoms with little symmetry. This said, no­
table progress has been accomplished by implementing 
new computational methods. Here we will outline the na­
ture of these methods and apply them to complex systems 
such as nanocrystals and nanowires. 

COMPUTATIONAL METHODS 

The spatial and energetic distributions of electrons can be 
described by a solution of the Kohn-Sham equation [5]: 

2v72 

+ Kn + VH+V^ ) l//„ = EnWn (1) 
-TV 
2m 

where Vfg^ is an ionic pseudopotential [6], VH is the 
Hartree or Coulomb potential, and Vxc is the exchange-

correlation potential. The Hartree and exchange-
correlation potentials can be determined from the 
electronic charge density. The density is given by 

p{f) 
n,occup 

(2) 

The summation is over all occupied states. The Hartree 
potential is then determined by 

V^VH(f) = -4nep(f) (3) 

This term can be interpreted as the electrostatic interac­
tion of an electron with the charge density of the system. 

The exchange-correlation potential is more problem­
atic. This potential can be evaluated using a local density 
approximation. The central tenet of this approximation is 
that the total exchange-correlation energy may be written 
as a universal functional of the density: 

Exc[p]= / p{r)e^[p{r)]d'r (4) 

where ê c is the exchange-correlation energy density. Exc 
and £xc are to be interpreted as depending solely on the 
charge density. The exchange-correlation potential, Vxc, 
is then obtained as Vxc = SExclp]/5p. 

It is not difficult to solve the Kohn-Sham equation 
(Eq. 1) for an atom. The atomic charge density can be 
taken to be spherically symmetric. Thus, the Kohn-Sham 
problem reduces to solving a one-dimensional problem. 
The Hartree and exchange-correlation potentials can be 
iterated to form a self-consistent field. This atomic so­
lution provides the input to construct a pseudopotential 
representing the effect of the core electrons and nucleus. 
This "ion core" pseudopotential, Vfg„, can be transferred 
to other systems such as molecules and quantum dots [6]. 
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The Kohn-Sham equations represent a nonlinear, self-
consistent eigenvalue problem. Typically, a solution 
is obtained by first approximating the Hartree and 
exchange-correlation potentials using a superposition of 
atomic charge densities. The Kohn-Sham equation is 
then solved using these approximate potentials. From 
the solution, new wave functions and charge densities 
are obtained and used to construct updated Hartree and 
exchange-correlation potentials. The process is repeated 
until the "input" and "output" potentials agree and a self-
consistent solution is realized. At this point, the total 
electronic energy can be computed along with a variety 
of other electronic properties [6]. 

Once the Kohn-Sham equation is solved, the total 
electronic energy, ET, of the system can be evaluated 
from 

ET= X ^n-
n,occup 

VH {r)p (f) d^r 

p{r)[£xc{p{r))-V,c{p{r))]d'r (5) 

where the energy eigenvalues are given by En. 
The structure energy can be obtained by adding the ion 

core electrostatic terms [6]. The forces can be obtained 
by taking the derivative of the energy with respect to 
position. 

The Kohn-Sham equation as cast in Eq. 1 can be 
solved using a variety of techniques. Often the wave 
functions can be expanded in a basis such as plane waves 
or gaussians and the resulting secular equations can be 
solved using standard diagonalization packages such as 
those found in VASP [7]. 

Here we focus on a different approach. We solve the 
Kohn-Sham equation without resort to an explicit ba­
sis [8, 9, 10, 11, 12]. We solve for the wave functions 
on the grid with a fixed domain, which encompasses the 
physical system of interest. The grid need not be uni­
form, but it greatly simplifies the problem if it is. The 
wave functions outside of the domain are required to 
vanish for confined systems or assume periodic bound­
ary conditions for systems with translational symmetry. 
In contrast to methods employing an explicit basis, such 
boundary conditions are easily incorporated. In particu­
lar, real space methods do not require the use of super-
cells for localized systems. As such, charged systems can 
easily be examined without considering any electrostatic 
divergences. 

Within a "real space" approach, one can solve the 
eigenvalue problem using a finite element or finite dif­
ference approach [9, 12]. We use a higher order finite 
difference approach owing to its simplicity in implemen­
tation. The Laplacian operator can be expressed using 

XQ 

Y, C„ \i/{xo -
n=-N 

-nh,y,z) (6) 

where h is the grid spacing, N is the number of nearest 
grid points, and C„ are the coefficients for evaluating the 
required derivatives [13]. The error scales as 0(/i^^+^). 

Once the secular equation is created, the eigenvalue 
problem can be solved using iterative methods [11, 14]. 
Typically, a method such as a preconditioned David­
son method can be used. This is a robust and efficient 
method, which never requires one to store the Hamil-
tonian matrix. In this paper we outline a method that 
avoids solving large eigenvalue problems explicitly [11]. 
The method utilizes a damped Chebyshev polynomial fil­
tered subspace iteration. In our approach, only the initial 
iteration requires solving an eigenvalue problem, which 
can be handled by means of any available efficient eigen-
solver. This step is used to provide a good initial sub-
space (or good initial approximation to the wave func­
tions). Because the subspace dimension is slightly larger 
than the number of wanted eigenvalues, the method does 
not require as much memory as standard restarted eigen-
solvers such as ARPACK and TRLan (Thick - Restart, 
Lanczos) [15, 16]. Moreover, the cost of orthogonahza-
tion is much reduced as the filtering approach only re­
quires a subspace with dimension slightly larger than the 
number of occupied states and orthogonalization is per­
formed only once per SCF iteration. In contrast, stan­
dard eigensolvers using restart usually require a subspace 
twice as large and the orthogonalization and other costs 
related to updating the eigenvectors are much higher 

The main idea of the proposed method is to start with 
a good initial eigen-basis, {y^n}, corresponding to occu­
pied states of the initial Hamiltonian, and then to im­
prove adaptively the subspace by polynomial filtering. 
That is, at a given self-consistent step, a polynomial filter, 
Pm{t), of order m is constructed for the current Hamilto­
nian Jf. As the eigen-basis is updated, the polynomial 
will be different at each SCF step since Jf will change. 
The goal of the filter is to make the subspace spanned 
by { v/„} = Pm{'^){'Hfn} approximate the eigen subspace 
corresponding to the occupied states of Jf. There is no 
need to make the new subspace, {y^n}, approximate the 
wanted eigen subspace of Jf to high accuracy at inter­
mediate steps. Instead, the filtering is designed so that the 
new subspace obtained at each self-consistent iteration 
step will progressively approximate the wanted eigen 
space of the final Hamiltonian when self-consistency is 
reached. 

This can be efficiently achieved by exploiting the 
Chebyshev polynomials. Cm, for the polynomials Pm. 
Specifically, we wish to exploit the fast growth property 
outside of the [-1, 1] interval. AU that is required to ob­
tain a good filter at a given SCF step, is to provide a lower 
bound and an upper bound of an interval of the spectrum 
of the current Hamiltonian .Jif. The lower bound can be 
readily obtained from the Ritz values computed from the 
previous step, and the upper bound can be inexpensively 
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obtained by a very small number of (^.g., 4 or 5) Lanczos 
steps [11]. Hence the main cost of the filtering at each it­
eration is in computing the polynomial operation. 

c^(t) 

1.5 

FIGURE 1. Example of a damped Chebyshev polynomial, 
C6, the shaded area corresponds to eigenvalue spectrum regime 
that will be enhanced by the filtering operation (see text). 

To construct a "damped" Chebyshev polynomial on 
the interval [a,b] to the interval [-1,1], one can use an 
affine mapping such that 

i{t) 
t-{a + b)/2 

{b-a)/2 
(7) 

The interval is chosen to encompass the energy interval 
containing the eigen space of interest, i.e., the lowest to 
highest eigenvalues. The filtering operation can then be 
expressed as 

{Wn}=C^{K^)){Wn} (8) 

This computation is accomplished by exploiting the con­
venient three-term recurrence property of Chebyshev 
polynomials: 

Co(0 = l Cx{t)=t 

Cw+l(0 = 2tCyn{t) — Cjn-l{t) (9) 

An example of a damped Chebyshev polynomial as de­
fined by Eqs. 7 and 9 is given in Fig. 1 where we have 
taken the lower bound as a=0 and the upper bound as 
b=2. In this example, the filtering would enhance the 
eigenvalue components in the shaded region. 

The filtering procedure for the self-consistent cycle is 
illustrated in Fig. 2. Unlike traditional methods, the cycle 
only requires one explicit diagonalization step. Instead of 
repeating this step again within the self-consistent loop, a 
filtering operation is used to create a new basis in which 
the desired eigen subspace is enhanced. After the new ba­
sis, {!//„}, is formed, the basis is orthogonalized. The or-
thogonalization step scales as the cube of the number of 
occupied states and as such this method is not an "order-
n" method. However, the prefactor is sufficiently small 

Select initial Potential (e.g., superpose atomic 
charge densities) 

Get init ial basis: {ip|^}from diagonalization 

Find the charge density from the basis: 

X ^ I |2 

T 
Solve for V|^ and and compute V^^^: 

wx = -4^p v.^ = vjp] 

Construct Hamiltonian: 

I 
Apply Chebyshev filter to the basis: 

{w„} = C„{l(H)){w„} 

FIGURE 2. Schematic of the self-consistent cycle using 
Chebyshev filtering. 

that the method is much faster than previous implemen­
tations of real space methods [11]. The cycle is repeated 
until the "input" and "output" density is unchanged. 

This algorithm allows to examine much larger systems 
than previously accessible owing to the efficacy of the 
Chebyshev filtering. Often the code will run more than 
an order of magnitude faster [11, 17]. In many cases it is 
now possible to consider nanostructures that span from 
the "atomic" limit to the "bulk limit". 

The Electronic Properties of Si 
Nanocrystals 

We will illustrate the Chebyshev filtering method for 
a prototypical system: hydrogenated silicon nanocrys­
tals. These nanocrystals, or quantum dots, are small frag­
ments of the bulk in which the surface has been passi-
vated by hydrogen atoms. In the case of silicon, the pas­
sivation is accomplished experimentally by capping the 
surface dangling bonds with hydrogen atoms [3]. These 
systems exhibit interesting changes as one approaches 
the nano-regime. For example, nanocrystals of silicon are 
expected to be optically active, whereas bulk crystals of 
silicon are not [3, 18]. 
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The largest dot we examined contained over ten thou­
sand atoms: Si904iHi860- This dot is approximately 7 nm 
in diameter. A ball and stick model for a much smaller 
quantum dot, approximately, 3 nm in diameter, is illus­
trated in Fig. 3. 

%?#f#fA?%.i:-

^m.'9'.MM 

FIGURE 3. Ball and stick model of a hydrogenated silicon 
quantum dot. The interior consists of a diamond fragment. The 
surface of the fragment is capped with hydrogen atoms. 

A solution of the Kohn-Sham Eq. 1 yields the energy 
levels or eigenstates for the quantum dot. If the dot is 
sufficiently large, this spectrum should approach the den­
sity of states of crystalline silicon. This is illustrated in 
Fig. 4. The bulk density of states will reflect van Hove 
singularities in the energy band topology, i.e. , singulari­
ties associated with critical points when V-^Eik) vanishes 

> 
CO 
CD 

-I—• 

05 
-I—• 

CO 
H— 
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>> 

•t—' 
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c 
0) a 

1p 
0.8 P 

0.6 P 
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0.8 P 
0.6 p 
0.4 p 
0.2 P 

Si H 
9041 1860 

9l5 

bulk Si 

-10 -5 
Energy (eV) 

FIGURE 4. Eigenvalue spectrum for a large quantum dot 
of silicon: Si904iHi86o (top panel) compared to the density of 
states of crystalline silicon (bottom panel). The energy zero 
is taken to be the highest occupied level for the dot and the 
valence band maximum for the crystal. 

1 

X—K IP(ASCF) 
- l -+EA(ASCF) 

Q-Q 

^-^ 
"^HOMO 

" LUMO 

"B a u =e 

^ - f 

0 2 4 6 8 
Cluster Diameter (nm) 

FIGURE 5. Evolution of the ionization potential (IP) and 
electron affinity (EA) with quantum dot size. Also shown are 
the eigenvalue levels for the highest occupied molecular or­
bital (HOMO) and the lowest unoccupied molecular orbital 
(LUMO). 

(where £'(^) is the energy band as a function of the wave 
vector [19]). The generally good agreement between the 
density of states for the dot and crystal suggests that by 
^ 7 nm the dot is of sufficient size to capture the van 
Hove singularities. (The comparison will not be exact 
because the quantum dot contains Si-H bonds in addi­
tion to the Si-Si bonds. In the dot eigenvalue spectrum, 
this results in the extra contributions near 5 eV.) 

We can also examine the evolution of the ionization 
potentials (I) and the electron affinities (A) for the quan­
tum dot: 

/ = ^(A^-1)-^(A^) 
(10) 

The difference between the ionization potential and the 
electron affinity can be associated with the quasi-particle 
gap: Eqp=l-A. If the exciton (electron-hole) interaction 
is small, this gap can be compared to the optical gap. 
However, for silicon quantum dots the exciton energy is 
believed to be on the order of ^ 1 eV for dots less than 
^ 1 nm. 

We can examine the scaling of the ionization potential 
and electron affinity by assuming a simple scaling and 
fitting to the calculated values (shown in Fig. 5): 

liD) 

A{D)-

.+AID'' 

(11) 

where D is the dot diameter. A fit of these quantities 
results in /oo=4.5 eV, Aoo=3.9 eV, a = l . l and /3=1.08. 
The fit gives a quasi-particle gap of Eqp{D ^ oo) = 
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/co —Aco=0.6 eV in the limit of an infinitely large dot. This 
value is in good agreement with the gap found for crys-
talhne silicon using the local density approximation [20]. 
The gap is not in good agreement with experiment ow­
ing to the failure of the local density approximation to 
describe excited states. 

A key aspect of our study is that we can examine the 
scaling of the ionization potential and electron affinity 
for quantum dots ranging from silane (SiH4) to dots 
with thousand of atoms. We not only verify the limiting 
value of the quasi-particle gap, we can ascertain how 
this limit is reached, i.e., how the ionization potential 
and electron affinity scale with the size of the dot and 
what the relationship is between these quantities and the 
highest occupied and lowest empty energy levels. 

Doping Si Nanocrystals with P 

Electronic and optical properties of semiconductor 
nanostructures are strongly affected by quantum confine­
ment owing to the reduced dimensionality of these sys­
tems [21]. In nanocrystals or quantum dots, where the 
motion of electrons (or holes) is limited in all three spa­
tial coordinates, quantum confinement results in a strong 
increase of the optical excitation energies when com­
pared to the bulk [22, 18]. One expects that other elec­
tronic and optical properties will be affected as well. 

For example, in bulk semiconductors, shallow donors 
(or acceptors) are crucial in determining the transport 
properties required to construct electronic devices. Ex­
perimental studies of shallow impurities in quantum dots, 
such as P in Si nanocrystals, have been hampered by 
difficulties in the preparation of samples in a control­
lable manner; it is hard to ensure that a quantum dot 
contains only one impurity. As such, only a few exper­
imental studies have focused on doping of quantum dots. 
These studies have utilized photoluminescence and elec­
tron spin resonance measurements. Increasing the dopant 
concentration results in distinct changes in its photolu­
minescence properties such as suppression of the sig­
nal [23] and a blue-shift of photoluminescence maxima 
with decreasing particle size in heavily j9-doped porous 
silicon [24]. From these measurements, it is not clear 
whether or not the doping of Si nanocrystals provides 
a generation of free charge carriers [24, 25]. Electron 
spin resonance involves measuring the hyperfine split­
ting (HFS) of the defect electron levels, which is directly 
related to localization of the dopant electron density on 
the impurity site [26]. In Si nanocrystals with radii of 
10 nm doped with P, a hyperfine splitting of 110 G has 
been observed [27]. This splitting is in sharp contrast to 
the bulk value of 42 G [27]. However, the intensity of 
the signal was very small compared to the conduction 

electron signal. A size dependence of the HFS was also 
found for Si quantum dots with radii around 50 nm [28], 
although in this case it was probably influenced by an 
asymmetrical shape of Si crystallites. Recently, a strong 
size dependence of the HFS of P atoms was observed in 
much smaller nanocrystallites with radii of 2 - 3 nm [29]. 

Theoretical studies of shallow impurities in quantum 
dots have also lagged relative to calculations for pure, 
undoped systems. The large number of atoms and low 
symmetry have hindered such studies. Most of the early 
studies of these systems relied on empirical studies for 
impurities in quantum dots [30, 31, 32]. These calcula­
tions involve the utilization of various parameters, which 
are usually assumed to have bulk-like values. Another 
common drawback in these past studies is the use of a 
generic hydrogen-like potential to model the impurity 
atom. Recently, some first principles studies have been 
performed [33, 34], but these studies have been limited 
to systems with less than 500 atoms. 

In contrast to supercell approaches, the real space 
method outlined earlier allows us to consider energy 
differences between charged clusters in a straightforward 
manner [35]. We calculated ionization energies Id for P-
doped nanocrystals and affinity energies Ap for pure Si 
nanocrystals using charged systems: 

Id=E{n-l)-E{n), 
Ap=E{n)-E{n+\), (12) 

where E is the ground state total energies of the n-, 
(n + 1) - and (n - 1) -electron systems. Our results as a 
function of nanocrystal's radius are shown in Fig. 7. It is 
a surprising that the ionization energy I^ shows virtually 
no dependence on the size of the nanocrystal. It assumes 
the bulk value of approximately 4 eV even for nanoscale 
systems. 

The binding energy EB for the donor atom can be 
calculated as a difference between these two quantities: 

EB=Id-Ar (13) 

This definition of the binding energy EB corresponds to 
two separate processes: First, the doped dot is ionized, 
/. e. the electron is physically removed from the nanocrys­
tal and Id is determined. Then, it is added to a dot of 
equivalent size without an impurity atom being present, 
and Ap is calculated. A similar approach was utilized 
in tight-binding calculations [32]. This definition of the 
binding energy for the donor atom can be contrasted 
with that for a bulk system, where the binding energy 
is defined as the difference between the dopant electron 
level and conduction band continuum. In nanocrystals or 
quantum dots, such a definition is problematic since an 
electron being excited into an unoccupied state (below 
the vacuum level) will be confined by the physical size 
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FIGURE 6. Model of P in a Si nanocrystal passivated by H on the surface. The Si atom at the center of the nanocrystal is 
substituted by P. 

10 12 14 16 18 20 22 
Radius(A) 

10 12 14 16 18 20 22 
Radius(A) 

FIGURE 7. Ionization energy /^, electron affinity Ap, and 
binding energy EB of the P electron(as defined in Eq. 12 and 
13) in a Si nanocrystal as a function of radius R 

of the dot and will continue to interact strongly with the 
impurity atom. 

Also in Fig. 7, the binding energy associated with the 
donor electron is plotted as a function of the nanocrystal 

radius up to ^^2.3 nm. If we define a shallow donor to 
have a binding energy of less than ^^100 meV, then P is 
not a shallow donor for any of the nanocrystals. One can 
make a rough extrapolation and see that P will not be 
shallow for nanocrystals of less than about 50 nm. 

The nature of the Si-P bond can be clarified by exam­
ining the charge density of the dopant electron |^( r )p 
for several dot sizes. In Fig. 8, we illustrate the charge 
profile for the case when the impurity is at the dot cen­
ter. The density is plotted along [100] direction; results in 
other directions are similar. At all dots radii, the dopant 
wave function is strongly localized around the impurity 
site, i.e., the majority of the charge is within the P-Si 
bond length. From effective mass calculations [36, 37], 
it follows that the envelope wave function of the dopant 
electron is given by 70 (/rr/T?) oc sm{Kr/R)/r. Our calcu­
lated charge profile (Fig. 8) is at variance with this de­
scription. This difference in the spatial distributions can 
be attributed to the weaker screening in quantum dots. 
At these sizes, the dielectric constant is several times 
smaller than the bulk value [18, 38], giving rise to the 
increase of the effective electron-impurity potential and 
stronger localization of the electron around the defect 
atom. 

Given the charge distribution of the dopant electron, 
one can evaluate the isotropic hyperfine parameter and 
the corresponding hyperfine splitting (HFS), which de­
termines the contact interaction between the electron and 
defect nuclei. We utilized the method of Van de Walle 
and Blochl [3 9] to extract the isotropic hyperfine parame-
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FIGURE 8. Charge density for the dopant electron along the [100] direction for three P-doped Si nanocrystals of different size. 
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FIGURE 9. Calculated (square and circle) and experimental 
(triangle) HFS versus the radius R of the P-doped Si nanocrys-
tal. The experimental data is taken from Ref. [29] 

Fig. 9, we also present the experimental data [29]. The 
measured values of the HFS falls on the best fit to calcu­
lated results. In our earlier work [33], we were unable to 
compare to the experimental regime because of the com­
putational load. In this work, our largest nanocrystal has 
a larger radius than the smallest experimental nanocrys­
tal observed. 

We also studied cases in which the P atom substitutes 
Si atoms in the nanocrystal other than the center one. 
We found that for Si nanocrystal with radius larger than 
^8A, it is the most energetically favorable for P atom 
to substitute Si at the dot center. Near the surface, the P 
atom electron density becomes more delocalized and the 
HFS shows a notable decrease in the value compared to 
P at the center position. Neglecting the surface site and 
the outer layers, the HFS is calculated to vary by only 
^ 1 0 % over the interior sites. 

ter and the resulting HFS. Our calculated hyperfine split­
tings for a P atom positioned in the dot center are given 
in Fig. 9. We also show the results where the Si host is 
fully relaxed around the P site and where it is not. The 
results are not very different for the large nanocrystals. 

At small nanocrystal sizes, the HFS is very large ow­
ing to strong localization of the electron around impu­
rity. As the radius increases, the value of the splitting 
decreases. Our calculated results scale with radius R of 
the dot as R~^ ^ (effective mass theory gives R~^). In 

CONCLUSIONS 

In summary, we have illustrated a new algorithm for 
computing the electronic properties of nanostructures 
and applied this algorithm to properties of hydrogenated 
Si quantum dots doped with a single phosphorus atom. 
We calculated the ionization energy and binding energy 
of the defect. The ionization energy does not exhibit be­
havior characteristic of quantum confinement; the de­
fect ionization energy remains constant throughout the 
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range of sizes studied and equal to the ionization en­
ergy of bulk silicon. The charge density associated with 
the excess dopant electron shows a strong localization 
towards the impurity site in small dots, and it starts to 
delocalize when the radius increases. This may be at­
tributed to weak screening in quantum dots resulting in 
the strong electron-impurity interaction. From our calcu­
lated charge density, we evaluated the isotropic hyperfine 
parameter and HFS for our phosphorus-doped nanocrys-
tals. We found that this quantity is large in small systems 
and decreases with size, in close agreement with recent 
experimental findings. 
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