22 research outputs found

    Selective Pressure for Biofilm Formation in Bacillus subtilis: Differential Effect of Mutations in the Master Regulator SinR on Bistability

    Get PDF
    Kampf J, Gerwig J, Kruse K, et al. Selective Pressure for Biofilm Formation in Bacillus subtilis: Differential Effect of Mutations in the Master Regulator SinR on Bistability. mBio. 2018;9(5): e01464-18

    Reaction mechanism for the replacement of calcite by dolomite and siderite: Implications for geochemistry, microstructure and porosity evolution during hydrothermal mineralisation

    Get PDF
    Carbonate reactions are common in mineral deposits due to CO2-rich mineralising fluids. This study presents the first in-depth, integrated analysis of microstructure and microchemistry of fluid-mediated carbonate reaction textures at hydrothermal conditions. In doing so, we describe the mechanisms by which carbonate phases replace one another, and the implications for the evolution of geochemistry, rock microstructures and porosity. The sample from the 1.95 Moz Junction gold deposit, Western Australia, contains calcite derived from carbonation of a metamorphic amphibole—plagioclase assemblage that has further altered to siderite and dolomite. The calcite is porous and contains iron-rich calcite blebs interpreted to have resulted from fluid-mediated replacement of compositionally heterogeneous amphiboles. The siderite is polycrystalline but nucleates topotactically on the calcite. As a result, the boundaries between adjacent grains are low-angle boundaries (<10°), which are geometrically similar to those formed by crystal–plastic deformation and recovery. Growth zoning within individual siderite grains shows that the low-angle boundaries are growth features and not due to deformation. Low-angle boundaries develop due to the propagation of defects at grain faces and zone boundaries and by impingement of grains that nucleated with small misorientations relative to each other during grain growth.The cores of siderite grains are aligned with the twin planes in the parent calcite crystal showing that the reactant Fe entered the crystal along the twin boundaries. Dolomite grains, many of which appear to in-fill space generated by the siderite replacement, also show alignment of cores along the calcite twin planes, suggesting that they did not grow into space but replaced the calcite. Where dolomite is seen directly replacing calcite, it nucleates on the Fe-rich calcite due to the increased compatibility of the Fe-bearing calcite lattice relative to the pure calcite. Both reactions are interpreted as fluid-mediated replacement reactions which use the crystallography and elemental chemistry of the calcite. Experiments of fluid-mediated replacement reactions show that they proceed much faster than diffusion-based reactions. This is important when considering the rates of reactions relative to fluid flow in mineralising systems

    A widespread family of bacterial cell wall assembly proteins

    Get PDF
    Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR–Cps2A–Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall

    EzrA: a spectrin-like scaffold in the bacterial cell division machinery

    No full text
    Much progress has been made in identifying the components of the divisome, the assembly of proteins that undertakes the vital process of cell division in bacteria. However, how the highly interdependent processes on either side of the membrane are coordinated during division is a major unresolved question. How is the degradation and synthesis of the cell wall on the outside of the cell coordinated with cytokinesis and membrane fission, which are driven from the inside of the cell by the tubulin homologue FtsZ? A possible key mediator of such coordination is the membrane protein EzrA, as it interacts both with FtsZ and the penicillin binding proteins (PBPs) that synthesize peptidoglycan. Cleverley et al. [Nature Communications (2014) 5, 5421] have recently solved the crystal structure of the cytoplasmic domain of B. subtilis EzrA, which points to an important scaffolding role for EzrA in the divisome. The structure resembles the eukaryotic, cytoskeletal spectrin proteins, which link actin filaments in the cytoskeleton and also connect the actin cytoskeleton to membrane-bound integrin proteins

    The Cryo-EM Structure of the CorA channel from Methanocaldococcus jannaschii in low magnesium conditions.

    Get PDF
    AbstractCorA channels are responsible for the uptake of essential magnesium ions by bacteria. X-ray crystal structures have been resolved for two full-length CorA channels, each in a non-conducting state with magnesium ions bound to the protein: These structures reveal a homo-pentameric quaternary structure with approximate 5-fold rotational symmetry about a central pore axis. We report the structure of the detergent solubilized Methanocaldococcus jannaschii CorA channel determined by Cryo-Electron Microscopy and Single Particle Averaging, supported by Small Angle X-ray Scattering and X-ray crystallography. This structure also shows a pentameric channel but with a highly asymmetric domain structure. The asymmetry of the domains includes differential separations between the trans-membrane segments, which reflects mechanical coupling of the cytoplasmic domain to the trans-membrane domain. This structure therefore reveals an important aspect of the gating mechanism of CorA channels by providing an indication of how the absence of magnesium ions leads to major structural changes

    Subunit arrangement in GpsB, a regulator of cell wall biosynthesis

    No full text
    GpsB, a key regulator of cell division in Gram-positive bacteria, interacts with a key peptidoglycan synthase at the cell division septum, the penicillin binding protein PBP1 (a.k.a. PonA). Bacillus subtilis GpsB has been reported to interact with other components of the cell division machinery, including EzrA, MreC, and PrkC. In this study, we report an analysis of the arrangement of subunits in Listeria monocytogenes GpsB by small-angle X-ray scattering. The resulting model has an elongated shape with residues critical for interaction with PBP1 and the cell membrane clustered at one end of the molecule. Mutations that destabilize the hexameric assembly of the wild-type protein have a gpsB null phenotype, indicating that oligomerization is critical for the correct function of GpsB. We suggest a model in which a single GpsB hexamer can interact with multiple PBP1 molecules and can therefore influence the arrangement of PBP1 molecules within the cell division machinery, a dynamic multiprotein complex called the divisome, consistent with a role for GpsB in modulating the synthesis of the cell wall

    Subunit arrangement in GpsB, a regulator of cell wall biosynthesis

    No full text
    GpsB, a key regulator of cell division in Gram-positive bacteria, interacts with a key peptidoglycan synthase at the cell division septum, the penicillin binding protein PBP1 (a.k.a. PonA). Bacillus subtilis GpsB has been reported to interact with other components of the cell division machinery, including EzrA, MreC, and PrkC. In this study, we report an analysis of the arrangement of subunits in Listeria monocytogenes GpsB by small-angle X-ray scattering. The resulting model has an elongated shape with residues critical for interaction with PBP1 and the cell membrane clustered at one end of the molecule. Mutations that destabilize the hexameric assembly of the wild-type protein have a gpsB null phenotype, indicating that oligomerization is critical for the correct function of GpsB. We suggest a model in which a single GpsB hexamer can interact with multiple PBP1 molecules and can therefore influence the arrangement of PBP1 molecules within the cell division machinery, a dynamic multiprotein complex called the divisome, consistent with a role for GpsB in modulating the synthesis of the cell wall
    corecore