2,211 research outputs found

    Temperature coefficients and radiation induced DLTS spectra of MOCVD grown n(+)p InP solar cells

    Get PDF
    The effects of temperature and radiation on n(+)p InP solar cells and mesa diodes grown by metallorganic chemical vapor deposition (MOCVD) were studied. It was shown that MOCVD is capable of consistently producing good quality InP solar cells with Eff greater than 19 percent which display excellent radiation resistance due to minority carrier injection and thermal annealing. It was also shown that universal predictions of InP device performance based on measurements of a small group of test samples can be expected to be quite accurate, and that the degradation of an InP device due to any incident particle spectrum should be predictable from a measurement following a single low energy proton irradiation

    This is Communist China

    Get PDF

    Preliminary Investigation of Impact on Multiple-Sheet Structures and an Evaluation of the Meteoroid Hazard to Space Vehicles

    Get PDF
    Small pyrex glass spheres, representative of stoney meteoroids, were fired into 2024-T3 aluminum alclad multiple-sheet structures at velocities to 11,000 feet per second to evaluate the effectiveness of multisheet hull construction as a means of increasing the resistance of a spacecraft to meteoroid penetrations. The results of these tests indicate that increasing the number of sheets in a structure while keeping the total sheet thickness constant and increasing the spacing between sheets both tend to increase the penetration resistance of a structure of constant weight per unit area. In addition, filling the space between the sheets with a light filler material was found to substantially increase structure penetration resistance with a small increase in weight. An evaluation of the meteoroid hazard to space vehicles is presented in the form of an illustrative-example for two specific lunar mission vehicles, a single-sheet, monocoque hull vehicle and a glass-wool filled, double-sheet hull vehicle. The evaluation is presented in terms of the "best" and the "worst" conditions that might be expected as determined from astronomical and satellite measurements, high-speed impact data, and hypothesized meteoroid structures and compositions. It was observed that the vehicle flight time without penetration can be increased significantly by use of multiple-sheet rather than single-sheet hull construction with no increase in hull weight. Nevertheless, it is evident that a meteoroid hazard exists, even for the vehicle with the selected multiple-sheet hull

    A common contrast pooling rule for suppression within and between the eyes

    Get PDF
    Recent work has revealed multiple pathways for cross-orientation suppression in cat and human vision. In particular, ipsiocular and interocular pathways appear to assert their influence before binocular summation in human but have different (1) spatial tuning, (2) temporal dependencies, and (3) adaptation after-effects. Here we use mask components that fall outside the excitatory passband of the detecting mechanism to investigate the rules for pooling multiple mask components within these pathways. We measured psychophysical contrast masking functions for vertical 1 cycle/deg sine-wave gratings in the presence of left or right oblique (645 deg) 3 cycles/deg mask gratings with contrast C%, or a plaid made from their sum, where each component (i) had contrast 0.5Ci%. Masks and targets were presented to two eyes (binocular), one eye (monoptic), or different eyes (dichoptic). Binocular-masking functions superimposed when plotted against C, but in the monoptic and dichoptic conditions, the grating produced slightly more suppression than the plaid when Ci $ 16%. We tested contrast gain control models involving two types of contrast combination on the denominator: (1) spatial pooling of the mask after a local nonlinearity (to calculate either root mean square contrast or energy) and (2) "linear suppression" (Holmes & Meese, 2004, Journal of Vision 4, 1080–1089), involving the linear sum of the mask component contrasts. Monoptic and dichoptic masking were typically better fit by the spatial pooling models, but binocular masking was not: it demanded strict linear summation of the Michelson contrast across mask orientation. Another scheme, in which suppressive pooling followed compressive contrast responses to the mask components (e.g., oriented cortical cells), was ruled out by all of our data. We conclude that the different processes that underlie monoptic and dichoptic masking use the same type of contrast pooling within their respective suppressive fields, but the effects do not sum to predict the binocular case

    Nurses\u27 Alumnae Association Bulletin, September 1958

    Get PDF
    Committee Reports Digest of Alumnae Meetings Graduation Awards - 1957 List of Wrong Addresses Marriages Necrology New Arrivals Physical Advances at Jefferson President\u27s Message School of Nursing Repor

    DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    Get PDF
    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NAS

    Biosynthesis and Localization of the Autographa californica Nuclear Polyhedrosis Virus 25K Gene Product

    Get PDF
    AbstractMutations of the AcMNPV 25K gene are associated with the "few polyhedra" phenotype (M. J. Fraser et al., 1983, J. Virol. 47, 287 300; B. Beames and M. D. Summers, 1989, Virology 168, 344-353). Polyclonal antisera was produced and used to investigate the time course of expression and localization of the 25K protein in infected cells. Western blot analysis detected 25K protein in both cytosolic and nuclear extracts from 18-24 hr p.i. through 96 hr p.i, and also in purified viral occlusions, but not in purified virions. Immunogold electron microscopy revealed that 25K protein was predominantly associated with amorphous cytoplasmic structures and to a lesser extent with a more electron-dense structure in the nucleus. Viral occlusions in cell sections were not specifically labeled by 25K antibody. Observations of purified viral occlusions and nuclei prepared for immungold EM revealed the presence of contaminating amorphous material that was labeled with 25K antibody

    Electron-irradiated two-terminal, monolithic InP/Ga0.47In0.53As tandem solar cells and annealing of radiation damage

    Get PDF
    Radiation damage results from two-terminal monolithic InP/Ga(0.47)In(0.53)As tandem solar cells subject to 1 MeV electron irradiation are presented. Efficiencies greater than 22 percent have been measured by the National Renewable Energy Laboratory from 2x2 sq cm cells at 1 sun, AMO (25 C). The short circuit current density, open circuit voltage and fill factor are found to tolerate the same amount of radiation at low fluences. At high fluence levels, slight differences are observed. Decreasing the base amount of radiation at the Ga(0.47)In(0.53)As bottomcell improved the radiation resistance of J(sub sc) dramatically. This is turn, extended the series current flow through the subcell substantially up to a fluence of 3x10(exp 15) cm(exp -2) compared to 3x10(exp 14) cm(exp -2), as observed previously. The degradation of the maximum power output form tandem device is comparable to that from shallow homojunction (SHJ) InP solar cells, and the mechanism responsible for such degradation is explained in terms of the radiation response of the component cells. Annealing studies revealed that the recovery of the tandem cell response is dictated by the annealing characteristics exhibited by SHJ InP solar cells

    Nurses\u27 Alumnae Association Bulletin, May 1960

    Get PDF
    Accreditation of Programs in Nursing Alumnae Meetings, 1959 Committee Reports Greetings from the President Highlights from first issue of Alumnae Bulletin Living in the new nurses residence Lost Members Marriages Necrology New Arrivals Notices Personal Items of Interest Report of the School of Nursing and Nursing Services Staff Nurses Association Student Activities Year of tremendous growth and expansio
    • …
    corecore