68 research outputs found

    Mesopotamien: Späturuk-Zeit und Frühdynastische Zeit

    Full text link
    Tagungsban

    Machine Translation and Automated Analysis of Cuneiform Languages (MTAAC)

    Get PDF
    Project Abstract: Ancient Mesopotamia, birthplace of writing, has produced vast numbers of cuneiform tablets that only a handful of highly specialized scholars are able to read. The task of studying them is so labor intensive that the vast majority have not yet been translated, with the result that their contents are not accessible either to historians in other fields or to the wider public. This project will develop and apply new computerised methods to translate and analyse the contents of some 67,000 highly standardised administrative documents from southern Mesopotamia from the 21st century BC. By automating these basic but labor-intensive processes, we will free up scholars’ time. The tools that we will develop, combining machine learning, statistical and neural machine translation technologies, may then be applied to other ancient languages. Similarly, the translations themselves, and the historical, social and economic data extracted from them, will be made publicly available on the web

    Scalable single-photon detection on a photonic chip

    Get PDF
    We developed a scalable method for integrating sub-70-ps-timing-jitter superconducting nanowire single-photon detectors with photonic integrated circuits. We assembled a photonic chip with four integrated detectors and performed the first on-chip g[superscript (2)](τ)-measurements of an entangled-photon source

    Membrane-integrated superconducting nanowire single-photon detectors

    Get PDF
    CLEO: QELS--Fundamental Science, San Jose, California United States, June 9-14, 2013We integrated superconducting nanowire single-photon detectors on sub-400-nm-thick silicon nitride membranes, which can then be transferred and aligned to photonic structures on a secondary chip with sub-micron placement accuracy

    On-Chip Detection of Entangled Photons by Scalable Integration of Single-Photon Detectors

    Get PDF
    Photonic integrated circuits (PICs) have emerged as a scalable platform for complex quantum technologies using photonic and atomic systems. A central goal has been to integrate photon-resolving detectors to reduce optical losses, latency, and wiring complexity associated with off-chip detectors. Superconducting nanowire single-photon detectors (SNSPDs) are particularly attractive because of high detection efficiency, sub-50-ps timing jitter, nanosecond-scale reset time, and sensitivity from the visible to the mid-infrared spectrum. However, while single SNSPDs have been incorporated into individual waveguides, the system efficiency of multiple SNSPDs in one photonic circuit has been limited below 0.2% due to low device yield. Here we introduce a micrometer-scale flip-chip process that enables scalable integration of SNSPDs on a range of PICs. Ten low-jitter detectors were integrated on one PIC with 100% device yield. With an average system efficiency beyond 10% for multiple SNSPDs on one PIC, we demonstrate high-fidelity on-chip photon correlation measurements of non-classical light.Comment: 27 pages, manuscript including supporting informatio

    Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer's disease, and dementia with Lewy bodies

    Get PDF
    The aim of this study was to characterize myelin loss as one of the features of white matter abnormalities across three common dementing disorders. We evaluated post-mortem brain tissue from frontal and temporal lobes from 20 vascular dementia (VaD), 19 Alzheimer’s disease (AD) and 31 dementia with Lewy bodies (DLB) cases and 12 comparable age controls. Images of sections stained with conventional luxol fast blue were analysed to estimate myelin attenuation by optical density. Serial adjacent sections were then immunostained for degraded myelin basic protein (dMBP) and the mean percentage area containing dMBP (%dMBP) was determined as an indicator of myelin degeneration. We further assessed the relationship between dMBP and glutathione S-transferase (a marker of mature oligodendrocytes) immunoreactivities. Pathological diagnosis significantly affected the frontal but not temporal lobe myelin attenuation: myelin density was most reduced in VaD compared to AD and DLB, which still significantly exhibited lower myelin density compared to ageing controls. Consistent with this, the degree of myelin loss was correlated with greater %dMBP, with the highest %dMBP in VaD compared to the other groups. The %dMBP was inversely correlated with the mean size of oligodendrocytes in VaD, whereas it was positively correlated with their density in AD. A two-tier regression model analysis confirmed that the type of disorder (VaD or AD) determines the relationship between %dMBP and the size or density of oligodendrocytes across the cases. Our findings, attested by the use of three markers, suggest that myelin loss may evolve in parallel with shrunken oligodendrocytes in VaD but their increased density in AD, highlighting partially different mechanisms are associated with myelin degeneration, which could originate from hypoxic–ischaemic damage to oligodendrocytes in VaD whereas secondary to axonal degeneration in AD

    Low-jitter single-photon detector arrays integrated with silicon and aluminum nitride photonic chips

    Get PDF
    We present progress on a scalable scheme for integration of single-photon detectors with silicon and aluminum nitride photonic circuits. We assemble arrays of low-jitter waveguide-integrated single-photon detectors and show up to 24% system detection efficiency

    Scalable Integration of Solid State Quantum Memories into a Photonic Network

    Get PDF
    Single nitrogen vacancy centers in nanostructured diamond form high quality nodes integrated into low-loss photonic circuitry, enabling on-chip detection and signal manipulation. Pre-selection provides near-unity yield. Long coherence times are demonstrated in integrated nodes

    Leukocyte Tyrosine Kinase Functions in Pigment Cell Development

    Get PDF
    A fundamental problem in developmental biology concerns how multipotent precursors choose specific fates. Neural crest cells (NCCs) are multipotent, yet the mechanisms driving specific fate choices remain incompletely understood. Sox10 is required for specification of neural cells and melanocytes from NCCs. Like sox10 mutants, zebrafish shady mutants lack iridophores; we have proposed that sox10 and shady are required for iridophore specification from NCCs. We show using diverse approaches that shady encodes zebrafish leukocyte tyrosine kinase (Ltk). Cell transplantation studies show that Ltk acts cell-autonomously within the iridophore lineage. Consistent with this, ltk is expressed in a subset of NCCs, before becoming restricted to the iridophore lineage. Marker analysis reveals a primary defect in iridophore specification in ltk mutants. We saw no evidence for a fate-shift of neural crest cells into other pigment cell fates and some NCCs were subsequently lost by apoptosis. These features are also characteristic of the neural crest cell phenotype in sox10 mutants, leading us to examine iridophores in sox10 mutants. As expected, sox10 mutants largely lacked iridophore markers at late stages. In addition, sox10 mutants unexpectedly showed more ltk-expressing cells than wild-type siblings. These cells remained in a premigratory position and expressed sox10 but not the earliest neural crest markers and may represent multipotent, but partially-restricted, progenitors. In summary, we have discovered a novel signalling pathway in NCC development and demonstrate fate specification of iridophores as the first identified role for Ltk
    corecore