158 research outputs found

    Continuous and Segmented Flow Microfluidics: Applications in High-throughput Chemistry and Biology

    Get PDF
    This account highlights some of our recent activities focused on developing microfluidic technologies for application in high-throughput and high-information content chemical and biological analysis. Specifically, we discuss the use of continuous and segmented flow microfluidics for artificial membrane formation, the analysis of single cells and organisms, nanomaterial synthesis and DNA amplification via the polymerase chain reaction. In addition, we report on recent developments in small-volume detection technology that allow access to the vast amounts of chemical and biological information afforded by microfluidic systems

    Incoherent dynamics in the toric code subject to disorder

    Full text link
    We numerically study the effects of two forms of quenched disorder on the anyons of the toric code. Firstly, a new class of codes based on random lattices of stabilizer operators is presented, and shown to be superior to the standard square lattice toric code for certain forms of biased noise. It is further argued that these codes are close to optimal, in that they tightly reach the upper bound of error thresholds beyond which no correctable CSS codes can exist. Additionally, we study the classical motion of anyons in toric codes with randomly distributed onsite potentials. In the presence of repulsive long-range interaction between the anyons, a surprising increase with disorder strength of the lifetime of encoded states is reported and explained by an entirely incoherent mechanism. Finally, the coherent transport of the anyons in the presence of both forms of disorder is investigated, and a significant suppression of the anyon motion is found.Comment: 13 pages, 12 figure

    Composite genome map and recombination parameters derived from three archetypal lineages of Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is a highly successful protozoan parasite in the phylum Apicomplexa, which contains numerous animal and human pathogens. T.gondii is amenable to cellular, biochemical, molecular and genetic studies, making it a model for the biology of this important group of parasites. To facilitate forward genetic analysis, we have developed a high-resolution genetic linkage map for T.gondii. The genetic map was used to assemble the scaffolds from a 10X shotgun whole genome sequence, thus defining 14 chromosomes with markers spaced at ∼300 kb intervals across the genome. Fourteen chromosomes were identified comprising a total genetic size of ∼592 cM and an average map unit of ∼104 kb/cM. Analysis of the genetic parameters in T.gondii revealed a high frequency of closely adjacent, apparent double crossover events that may represent gene conversions. In addition, we detected large regions of genetic homogeneity among the archetypal clonal lineages, reflecting the relatively few genetic outbreeding events that have occurred since their recent origin. Despite these unusual features, linkage analysis proved to be effective in mapping the loci determining several drug resistances. The resulting genome map provides a framework for analysis of complex traits such as virulence and transmission, and for comparative population genetic studies

    Food-Web Models Predict Species Abundances in Response to Habitat Change

    Get PDF
    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss

    Recombinant Newcastle disease viruses expressing immunological checkpoint inhibitors induce a pro-inflammatory state and enhance tumor-specific immune responses in two murine models of cancer

    Get PDF
    IntroductionTumor microenvironments are immunosuppressive due to progressive accumulation of mutations in cancer cells that can drive expression of a range of inhibitory ligands and cytokines, and recruitment of immunomodulatory cells, including myeloid-derived suppressor cells (MDSC), tumor-associated macrophages, and regulatory T cells (Tregs).MethodsTo reverse this immunosuppression, we engineered mesogenic Newcastle disease virus (NDV) to express immunological checkpoint inhibitors anti-cytotoxic T lymphocyte antigen-4 and soluble programmed death protein-1.ResultsIntratumoral administration of recombinant NDV (rNDV) to mice bearing intradermal B16-F10 melanomas or subcutaneous CT26LacZ colon carcinomas led to significant changes in the tumor-infiltrating lymphocyte profiles. Vectorizing immunological checkpoint inhibitors in NDV increased activation of intratumoral natural killer cells and cytotoxic T cells and decreased Tregs and MDSCs, suggesting induction of a pro-inflammatory state with greater infiltration of activated CD8+ T cells. These notable changes translated to higher ratios of activated effector/suppressor tumor-infiltrating lymphocytes in both cancer models, which is a promising prognostic marker. Whereas all rNDV-treated groups showed evidence of tumor regression and increased survival in the CT26LacZ and B16-F10, only treatment with NDV expressing immunological checkpoint blockades led to complete responses compared to tumors treated with NDV only.DiscussionThese data demonstrated that NDV expressing immunological checkpoint inhibitors could reverse the immunosuppressive state of tumor microenvironments and enhance tumor-specific T cell responses
    corecore