103 research outputs found

    Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4

    Get PDF
    We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10-34, OR = 1.43[1.26-1.60]) and rs1234317-T (P = 1.16×10-28, OR = 1.38[1.24-1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5′ region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5′ risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait. © 2013 Manku et al

    Lupus risk variants in the PXK locus alter B-cell receptor internalization

    Get PDF
    Genome wide association studies have identified variants in PXK that confer risk for humoral autoimmune diseases, including systemic lupus erythematosus (SLE or lupus), rheumatoid arthritis and more recently systemic sclerosis. While PXK is involved in trafficking of epidermal growth factor Receptor (EGFR) in COS-7 cells, mechanisms linking PXK to lupus pathophysiology have remained undefined. In an effort to uncover the mechanism at this locus that increases lupus-risk, we undertook a fine-mapping analysis in a large multi-ancestral study of lupus patients and controls. We define a large (257kb) common haplotype marking a single causal variant that confers lupus risk detected only in European ancestral populations and spans the promoter through the 3' UTR of PXK. The strongest association was found at rs6445972 with P < 4.62 × 10-10, OR 0.81 (0.75 - 0.86). Using stepwise logistic regression analysis, we demonstrate that one signal drives the genetic association in the region. Bayesian analysis confirms our results, identifying a 95% credible set consisting of 172 variants spanning 202 kb. Functionally, we found that PXK operates on the B-cell antigen receptor (BCR); we confirmed that PXK influenced the rate of BCR internalization. Furthermore, we demonstrate that individuals carrying the risk haplotype exhibited a decreased rate of BCR internalization, a process known to impact B cell survival and cell fate. Taken together, these data define a new candidate mechanism for the genetic association of variants around PXK with lupus risk and highlight the regulation of intracellular trafficking as a genetically regulated pathway mediating human autoimmunity

    ABIN1 dysfunction as a genetic basis for lupus nephritis

    Get PDF
    The genetic factors underlying the pathogenesis of lupus nephritis associated with systemic lupus erythematosus are largely unknown, although animal studies indicate that nuclear factor (NF)-?B is involved. We reported previously that aknockin mouse expressinganin active form of ABIN1 (ABIN1[D485N]) develops lupus-like autoimmune disease and demonstrates enhanced activation of NF-?B and mitogen-activated protein kinases in immune cells after toll-like receptor stimulation. In the current study, we show that ABIN1[D485N] mice develop progressive GN similar to class III and IV lupus nephritis in humans. To investigate the clinical relevance of ABIN1 dysfunction, we genotyped five single-nucleotide polymorphisms in the gene encoding ABIN1, TNIP1, in samples from European-American, African American, Asian, Gullah, and Hispanic participants in the Large Lupus Association Study 2. Comparing cases of systemic lupus erythematosus with nephritis and cases ofsystemic lupus erythematosus without nephritis revealed strong associations with lupus nephritis at rs7708392 in European Americans and rs4958881 in African Americans. Comparing cases of systemic lupus erythematosus with nephritis and healthy controls revealed a stronger association at rs7708392 in European Americans but not at rs4958881 in African Americans. Our data suggest that variants in the TNIP1 gene are associated with the risk for lupus nephritis and could be mechanistically involved in disease development via aberrant regulation of NF-?B and mitogen-activated protein kinase activity. Copyright © 2013 by the American Society of Nephrology

    Preferential binding to elk-1 by sle-associated il10 risk allele upregulates il10 expression

    Get PDF
    Immunoregulatory cytokine interleukin-10 (IL-10) is elevated in sera from patients with systemic lupus erythematosus (SLE) correlating with disease activity. The established association of IL10 with SLE and other autoimmune diseases led us to fine map causal variant(s) and to explore underlying mechanisms. We assessed 19 tag SNPs, covering the IL10 gene cluster including IL19, IL20 and IL24, for association with SLE in 15,533 case and control subjects from four ancestries. The previously reported IL10 variant, rs3024505 located at 1 kb downstream of IL10, exhibited the strongest association signal and was confirmed for association with SLE in European American (EA) (P = 2.7×10−8, OR = 1.30), but not in non-EA ancestries. SNP imputation conducted in EA dataset identified three additional SLE-associated SNPs tagged by rs3024505 (rs3122605, rs3024493 and rs3024495 located at 9.2 kb upstream, intron 3 and 4 of IL10, respectively), and SLE-risk alleles of these SNPs were dose-dependently associated with elevated levels of IL10 mRNA in PBMCs and circulating IL-10 protein in SLE patients and controls. Using nuclear extracts of peripheral blood cells from SLE patients for electrophoretic mobility shift assays, we identified specific binding of transcription factor Elk-1 to oligodeoxynucleotides containing the risk (G) allele of rs3122605, suggesting rs3122605 as the most likely causal variant regulating IL10 expression. Elk-1 is known to be activated by phosphorylation and nuclear localization to induce transcription. Of interest, phosphorylated Elk-1 (p-Elk-1) detected only in nuclear extracts of SLE PBMCs appeared to increase with disease activity. Co-expression levels of p-Elk-1 and IL-10 were elevated in SLE T, B cells and monocytes, associated with increased disease activity in SLE B cells, and were best downregulated by ERK inhibitor. Taken together, our data suggest that preferential binding of activated Elk-1 to the IL10 rs3122605-G allele upregulates IL10 expression and confers increased risk for SLE in European Americans

    Acquisition of Complement Inhibitor Serine Protease Factor I and Its Cofactors C4b-Binding Protein and Factor H by Prevotella intermedia

    Get PDF
    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases

    Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility

    Get PDF
    Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10-8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10-7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ~146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10-7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10-4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE

    Complement C1q Activates Tumor Suppressor WWOX to Induce Apoptosis in Prostate Cancer Cells

    Get PDF
    BACKGROUND:Tissue exudates contain low levels of serum complement proteins, and their regulatory effects on prostate cancer progression are largely unknown. We examined specific serum complement components in coordinating the activation of tumor suppressors p53 and WWOX (also named FOR or WOX1) and kinases ERK, JNK1 and STAT3 in human prostate DU145 cells. METHODOLOGY/PRINCIPAL FINDINGS:DU145 cells were cultured overnight in 1% normal human serum, or in human serum depleted of an indicated complement protein. Under complement C1q- or C6-free conditions, WOX1 and ERK were mainly present in the cytoplasm without phosphorylation, whereas phosphorylated JNK1 was greatly accumulated in the nuclei. Exogenous C1q rapidly restored the WOX1 activation (with Tyr33 phosphorylation) in less than 2 hr. Without serum complement C9, p53 became activated, and hyaluronan (HA) reversed the effect. Under C6-free conditions, HA induced activation of STAT3, an enhancer of metastasis. Notably, exogenous C1q significantly induced apoptosis of WOX1-overexpressing DU145 cells, but not vehicle-expressing cells. A dominant negative and Y33R mutant of WOX1 blocked the apoptotic effect. C1q did not enhance p53-mediated apoptosis. By total internal reflection fluorescence (TIRF) microscopy, it was determined that C1q destabilized adherence of WOX1-expressing DU145 cells by partial detaching and inducing formation of clustered microvilli for focal adhesion particularly in between cells. These cells then underwent shrinkage, membrane blebbing and death. Remarkably, as determined by immunostaining, benign prostatic hyperplasia and prostate cancer were shown to have a significantly reduced expression of tissue C1q, compared to age-matched normal prostate tissues. CONCLUSIONS/SIGNIFICANCE:We conclude that complement C1q may induce apoptosis of prostate cancer cells by activating WOX1 and destabilizing cell adhesion. Downregulation of C1q enhances prostate hyperplasia and cancerous formation due to failure of WOX1 activation

    Variation in the ICAM1-ICAM4-ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries

    Get PDF
    Objective: Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin ?M(complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM. Methods: The authors examined several markers in the ICAM1-ICAM4-ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case-control study of 17 481 unrelated participants from four ancestry populations. The singlemarker association and gene-gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed. Results: The A-allele of ICAM1-ICAM4-ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88 × 10-10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32 × 10-46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91 × 10-5). Conclusion: These findings are the first to suggest that an ICAM-integrin-mediated pathway contributes to susceptibility to SLE

    Complement susceptibility in glutamine deprived breast cancer cells

    No full text
    <p>Abstract</p> <p>Background</p> <p>Membrane complement regulatory proteins (mCRPs) inhibit complement-mediated killing of human cells by human complement, a property that confers protection from complement to malignant breast cancer cells and that thwarts some immunotherapies. Metabolic mechanisms may come into play in protecting cancer cells from the complement system subsequent to relatively low levels of complement deposition.</p> <p>Results</p> <p>In differentiating these mechanisms, two types of human breast cancer cell lines, MCF7 (adenocarcinoma) and Bcap37 (medullary carcinoma) were cell-cycle synchronized using glutamine-deprivation followed by restoration. These cells were examined for the expression of two mCRPs (CD59 and CD55), and for subsequent susceptibility to antibody-mediated complement-induced membrane damage. After glutamine restoration, MCF7 and Bcap37 cells were synchronized into the G2/M phase and an average increased expression of CD59 and CD55 occurred with a corresponding resistance to complement-mediated damage. Blocking CD59 inhibitory function with monoclonal antibody revealed that CD59 played a key role in protecting unsynchronized Bcap37 and MCF7 cancer cells from the complement membrane attack complex. Interestingly, glutamine-deprivation did not significantly affect the expression of proteins e.g., the surface level of CD59 or CD55, but did increase the susceptibility to complement-mediated killing. One possible explanation is that glutamine-deprivation may have slowed the turnover rate of mCRPs, preventing the cells from replacing pre-existing mCRPs, as they became neutralized by covalent C4b and C3b depositions.</p> <p>Conclusion</p> <p>Taken together the findings are consistent with the conclusion that future immunotherapies should aim to achieve a highly specific and profound activation and deposition of complement as well as to disrupt the synthesis and expression of CD59 and CD55 by the cancer cells.</p

    Optimal NHS Dilution for Complement-mediated lysis of human breast cancer cell lines

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "Complement susceptibility in glutamine deprived breast cancer cells"</p><p>http://www.celldiv.com/content/2/1/20</p><p>Cell Division 2007;2():20-20.</p><p>Published online 11 Jul 2007</p><p>PMCID:PMC2031881.</p><p></p> The Bcap37 and MCF7 cells (1 × 10) were sensitized 20 μg rabbit antibody to β-microglobulin and incubated with specified dilutions of normal human serum (NHS). After a total 4.5 hours of incubation at 37°C, supernatants were collected and tested for LDH activity to determine percent lysis
    • …
    corecore