36 research outputs found

    Transdifferentiation of Human Circulating Monocytes Into Neuronal-Like Cells in 20 Days and Without Reprograming

    Get PDF
    Despite progress, our understanding of psychiatric and neurological illnesses remains poor, at least in part due to the inability to access neurons directly from patients. Currently, there are in vitro models available but significant work remains, including the search for a less invasive, inexpensive and rapid method to obtain neuronal-like cells with the capacity to deliver reproducible results. Here, we present a new protocol to transdifferentiate human circulating monocytes into neuronal-like cells in 20 days and without the need for viral insertion or reprograming. We have thoroughly characterized these monocyte-derived-neuronal-like cells (MDNCs) through various approaches including immunofluorescence (IF), flow cytometry, qRT-PCR, single cell mRNA sequencing, electrophysiology and pharmacological techniques. These MDNCs resembled human neurons early in development, expressed a variety of neuroprogenitor and neuronal genes as well as several neuroprogenitor and neuronal proteins and also presented electrical activity. In addition, when these neuronal-like cells were exposed to either dopamine or colchicine, they responded similarly to neurons by retracting their neuronal arborizations. More importantly, MDNCs exhibited reproducible differentiation rates, arborizations and expression of dopamine 1 receptors (DR1) on separate sequential samples from the same individual. Differentiation efficiency measured by cell morphology was on average 11.9 ± 1.4% (mean, SEM, n = 38,819 cells from 15 donors). To provide context and help researchers decide which in vitro model of neuronal development is best suited to address their scientific question,we compared our results with those of other in vitro models currently available and exposed advantages and disadvantages of each paradigm

    Somatostatin modulation of excitatory synaptic transmission between periventricular and arcuate hypothalamic nuclei in vitro.

    No full text
    International audienceHypophysiotropic somatostatin (SRIF) and growth hormone-releasing hormone (GHRH) neurons are primarily involved in the neurohormonal control of growth hormone (GH) secretion. They are located in periventricular (PEV) and arcuate (ARC) hypothalamic nuclei, respectively, but their connectivity is not well defined. To better understand the neuronal network involved in the control of GH secretion, connections from PEV to ARC neurons were reconstructed in vitro and neuronal phenotypes assessed by single-cell multiplex RT-PCR. Of 814 stimulated PEV neurons, monosynaptic responses were detected in only 45 ARC neurons. Monosynaptic excitatory currents were detected in 29 ARC neurons and inhibitory currents in 16, indicating a 2/1 ratio for excitatory versus inhibitory connections. Galanin (GAL), NPY, pro-opiomelanocortin (POMC), and SRIF mRNAs were detected in neurons from both nuclei but GHRH mRNA almost exclusively in ARC. Among the five SRIF receptors, only sst1 and sst2 were expressed, in 94% of ARC and 59% of PEV neurons, respectively. Of 128 theoritical combinations between neuropeptides and sst receptors, only 22 were represented in PEV and 25 in ARC. For PEV neurons, neuropeptide phenotypes did not influence excitatory connections. However, the occurrence of presynaptic sst receptors on GAL and SRIF PEV neurons significantly increased their probability of connection to ARC neurons. GHRH ARC neurons expressing sst2, but not sst1, receptors were always connected with PEV neurons. Physiological responses to sst1 (CH-275) or sst2 (Octreotide) agonists were always correlated with the detection of respective sst mRNAs. In conclusion, 1) SRIF-modulated excitatory transmission develops in vitro from PEV to ARC neurons, 2) ARC GHRH neurons bearing sst2 receptors appears directly controlled by fast glutamatergic transmission from PEV neurons simultaneously expressing one to four neuropeptides, 3) GHRH neurons bearing sst1 receptors lack this control, and 4) these results suggest that fast excitatory neurotransmission and neuropeptide modulation can derive from a small subset of PEV hypothalamic neurons targeted at ARC neuronal subpopulations
    corecore