67 research outputs found
Definition of the stimulated emission threshold in high- nanoscale lasers through phase-space reconstruction
Nanoscale lasers sustain few optical modes so that the fraction of
spontaneous emission funnelled into the useful (lasing) mode is high
(of the order of few 10) and the threshold, which traditionally
corresponds to an abrupt kink in the light in- light out curve, becomes
ill-defined. We propose an alternative definition of the threshold, based on
the dynamical response of the laser, which is valid even for lasers.
The laser dynamics is analyzed through a reconstruction of its phase-space
trajectory for pulsed excitation. Crossing the threshold brings about a change
in the shape of the trajectory and in the area contained in it. An unambiguous
definition of the threshold in terms of this change is shown theoretically and
illustrated experimentally in a photonic crystal laser
N-Photon wave packets interacting with an arbitrary quantum system
We present a theoretical framework that describes a wave packet of light
prepared in a state of definite photon number interacting with an arbitrary
quantum system (e.g. a quantum harmonic oscillator or a multi-level atom).
Within this framework we derive master equations for the system as well as for
output field quantities such as quadratures and photon flux. These results are
then generalized to wave packets with arbitrary spectral distribution
functions. Finally, we obtain master equations and output field quantities for
systems interacting with wave packets in multiple spatial and/or polarization
modes.Comment: 20 pages, 8 figures. Published versio
Linear stochastic wave-equations for continuously measured quantum systems
While the linearity of the Schr\"odinger equation and the superposition
principle are fundamental to quantum mechanics, so are the backaction of
measurements and the resulting nonlinearity. It is remarkable, therefore, that
the wave-equation of systems in continuous interaction with some reservoir,
which may be a measuring device, can be cast into a linear form, even after the
degrees of freedom of the reservoir have been eliminated. The superposition
principle still holds for the stochastic wave-function of the observed system,
and exact analytical solutions are possible in sufficiently simple cases. We
discuss here the coupling to Markovian reservoirs appropriate for homodyne,
heterodyne, and photon counting measurements. For these we present a derivation
of the linear stochastic wave-equation from first principles and analyze its
physical content.Comment: 34 pages, Revte
The quail genome:insights into social behaviour, seasonal biology and infectious disease response
Background: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. Results: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. Conclusions: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species
Correction to: First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma
Following publication of the original article [1], the authors reported an error in the spelling of one of the author names. In this Correction the incorrect and correct author names are indicated and the author name has been updated in the original publication. The authors also reported an error in the Methods section of the original article. In this Correction the incorrect and correct versions of the affected sentence are indicated. The original article has not been updated with regards to the error in the Methods section.https://deepblue.lib.umich.edu/bitstream/2027.42/144529/1/12967_2018_Article_1552.pd
Recommended from our members
Using âomicsâ and integrated multi-omits approaches to guide probiotic selection to mitigate chytridiomycosis and other emerging infectious diseases
Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called âomics,â are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the KolmogorovâSmirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species
Report from the Annual Conference of the British Society of Echocardiography, November 2017, Edinburgh International Conference Centre, Edinburgh
No abstract available
- âŠ