80 research outputs found

    Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanisms of long chain fatty acid uptake across the plasma membrane are important targets in treatment of many human diseases like obesity or hepatic steatosis. Long chain fatty acid translocation is achieved by a concert of co-existing mechanisms. These lipids can passively diffuse, but certain membrane proteins can also accelerate the transport. However, we now can provide further evidence that not only proteins but also lipid microdomains play an important part in the regulation of the facilitated uptake process.</p> <p>Methods</p> <p>Dynamic association of FAT/CD36 a candidate fatty acid transporter with lipid rafts was analysed by isolation of detergent resistant membranes (DRMs) and by clustering of lipid rafts with antibodies on living cells. Lipid raft integrity was modulated by cholesterol depletion using methyl-β-cyclodextrin and sphingolipid depletion using myriocin and sphingomyelinase. Functional analyses were performed using an [3H]-oleate uptake assay.</p> <p>Results</p> <p>Overexpression of FAT/CD36 and FATP4 increased long chain fatty acid uptake. The uptake of long chain fatty acids was cholesterol and sphingolipid dependent. Floating experiments showed that there are two pools of FAT/CD36, one found in DRMs and another outside of these domains. FAT/CD36 co-localized with the lipid raft marker PLAP in antibody-clustered domains at the plasma membrane and segregated away from the non-raft marker GFP-TMD. Antibody cross-linking increased DRM association of FAT/CD36 and accelerated the overall fatty acid uptake in a cholesterol dependent manner. Another candidate transporter, FATP4, was neither present in DRMs nor co-localized with FAT/CD36 at the plasma membrane.</p> <p>Conclusion</p> <p>Our observations suggest the existence of two pools of FAT/CD36 within cellular membranes. As increased raft association of FAT/CD36 leads to an increased fatty acid uptake, dynamic association of FAT/CD36 with lipid rafts might regulate the process. There is no direct interaction of FATP4 with lipid rafts or raft associated FAT/CD36. Thus, lipid rafts have to be considered as targets for the treatment of lipid disorders.</p

    Mucosal protection by phosphatidylcholine

    Get PDF
    The colonic mucus serves a first barrier towards invasion of commensal bacteria in stools to prevent inflammation. One essential component of intestinal mucus is phosphatidylcholine (PC) which represents more than 90% of the phospholipids in mucus indicative for a selective transport of PC into this compartment. It is arranged in lamellar structures as surfactant-like particles which provide a hydrophobic surface on top of the hydrated mucus gel to prevent the invasion of bacteria from intestinal lumen. In ulcerative colitis (UC), the mucus PC content is reduced by 70%, irrespective of the state of inflammation. Thus, it could represent an intrinsic primary pathogenetic condition predisposing to bacterial invasion and the precipitation of inflammation. Since PC was shown to be mainly secreted by the ileal mucosa from where it is assumed to move distally to the colon, the PC content along the colonic wall towards the rectum gradually thins, with the least PC content in the rectum. This explains the start of the clinical manifestation of UC in the rectum and the expansion from there to the upper parts of the colon. In three clinical trials, when missing mucus PC in UC was supplemented by an oral, delayed release PC preparation, the inflammation improved and even resolved after a 3-month treatment course. The data indicate the essential role of the mucus PC content for protection against inflammation in colon. Copyright (C) 2012 S. Karger AG, Base

    Isolation of Human Islets from Partially Pancreatectomized Patients

    Get PDF
    Investigations into the pathogenesis of type 2 diabetes and islets of Langerhans malfunction 1 have been hampered by the limited availability of type 2 diabetic islets from organ donors2. Here we share our protocol for isolating islets from human pancreatic tissue obtained from type 2 diabetic and non-diabetic patients who have undergone partial pancreatectomy due to different pancreatic diseases (benign or malignant pancreatic tumors, chronic pancreatitis, and common bile duct or duodenal tumors). All patients involved gave their consent to this study, which had also been approved by the local ethics committee. The surgical specimens were immediately delivered to the pathologist who selected soft and healthy appearing pancreatic tissue for islet isolation, retaining the damaged tissue for diagnostic purposes. We found that to isolate more than 1,000 islets, we had to begin with at least 2 g of pancreatic tissue. Also essential to our protocol was to visibly distend the tissue when injecting the enzyme-containing media and subsequently mince it to aid digestion by increasing the surface area

    Rhizoma Coptidis Inhibits LPS-Induced MCP-1/CCL2 Production in Murine Macrophages via an AP-1 and NFκB-Dependent Pathway

    Get PDF
    Introduction. The Chinese extract Rhizoma coptidis is well known for its anti-inflammatory, antioxidative, antiviral, and antimicrobial activity. The exact mechanisms of action are not fully understood. Methods. We examined the effect of the extract and its main compound, berberine, on LPS-induced inflammatory activity in a murine macrophage cell line. RAW 264.7 cells were stimulated with LPS and incubated with either Rhizoma coptidis extract or berberine. Activation of AP-1 and NFκB was analyzed in nuclear extracts, secretion of MCP-1/CCL2 was measured in supernatants. Results. Incubation with Rhizoma coptidis and berberine strongly inhibited LPS-induced monocyte chemoattractant protein (MCP)-1 production in RAW cells. Activation of the transcription factors AP-1 and NFκB was inhibited by Rhizoma coptidis in a dose- and time-dependent fashion. Conclusions. Rhizoma coptidis extract inhibits LPS-induced MCP-1/CCL2 production in vitro via an AP-1 and NFκB-dependent pathway. Anti-inflammatory action of the extract is mediated mainly by its alkaloid compound berberine

    Hepcidin Is an Antibacterial, Stress-Inducible Peptide of the Biliary System

    Get PDF
    BACKGROUND/AIMS: Hepcidin (gene name HAMP), an IL-6-inducible acute phase peptide with antimicrobial properties, is the key negative regulator of iron metabolism. Liver is the primary source of HAMP synthesis, but it is also produced by other tissues such as kidney or heart and is found in body fluids such as urine or cerebrospinal fluid. While the role of hepcidin in biliary system is unknown, a recent study demonstrated that conditional gp130-knockout mice display diminished hepcidin levels and increased rate of biliary infections. METHODS: Expression and localization of HAMP in biliary system was analyzed by real time RT-PCR, in-situ hybridization, immunostaining and -blotting, while prohepcidin levels in human bile were determined by ELISA. RESULTS: Hepcidin was detected in mouse/human gallbladder and bile duct epithelia. Biliary HAMP is stress-inducible, in that it is increased in biliary cell lines upon IL-6 stimulation and in gallbladder mucosa of patients with acute cholecystitis. Hepcidin is also present in the bile and elevated prohepcidin levels were observed in bile of primary sclerosing cholangitis (PSC) patients with concurrent bacterial cholangitis compared to PSC subjects without bacterial infection (median values 22.3 vs. 8.9; p = 0.03). In PSC-cholangitis subjects, bile prohepcidin levels positively correlated with C-reactive protein and bilirubin levels (r = 0.48 and r = 0.71, respectively). In vitro, hepcidin enhanced the antimicrobial capacity of human bile (p<0.05). CONCLUSION: Hepcidin is a stress-inducible peptide of the biliary epithelia and a potential marker of biliary stress. In the bile, hepcidin may serve local functions such as protection from bacterial infections

    Clinical field-strength MRI of amyloid plaques induced by low-level cholesterol feeding in rabbits

    Get PDF
    Two significant barriers have limited the development of effective treatment of Alzheimer's disease. First, for many cases the aetiology is unknown and likely multi-factorial. Among these factors, hypercholesterolemia is a known risk predictor and has been linked to the formation of β-amyloid plaques, a pathological hallmark this disease. Second, standardized diagnostic tools are unable to definitively diagnose this disease prior to death; hence new diagnostic tools are urgently needed. Magnetic resonance imaging (MRI) using high field-strength scanners has shown promise for direct visualization of β-amyloid plaques, allowing in vivo longitudinal tracking of disease progression in mouse models. Here, we present a new rabbit model for studying the relationship between cholesterol and Alzheimer's disease development and new tools for direct visualization of β-amyloid plaques using clinical field-strength MRI. New Zealand white rabbits were fed either a low-level (0.125–0.25% w/w) cholesterol diet (n = 5) or normal chow (n = 4) for 27 months. High-resolution (66 × 66 × 100 µm3; scan time = 96 min) ex vivo MRI of brains was performed using a 3-Tesla (T) MR scanner interfaced with customized gradient and radiofrequency coils. β-Amyloid-42 immunostaining and Prussian blue iron staining were performed on brain sections and MR and histological images were manually registered. MRI revealed distinct signal voids throughout the brains of cholesterol-fed rabbits, whereas minimal voids were seen in control rabbit brains. These voids corresponded directly to small clusters of extracellular β-amyloid-positive plaques, which were consistently identified as iron-loaded (the presumed source of MR contrast). Plaques were typically located in the hippocampus, parahippocampal gyrus, striatum, hypothalamus and thalamus. Quantitative analysis of the number of histologically positive β-amyloid plaques (P < 0.0001) and MR-positive signal voids (P < 0.05) found in cholesterol-fed and control rabbit brains corroborated our qualitative observations. In conclusion, long-term, low-level cholesterol feeding was sufficient to promote the formation of extracellular β-amyloid plaque formation in rabbits, supporting the integral role of cholesterol in the aetiology of Alzheimer's disease. We also present the first evidence that MRI is capable of detecting iron-associated β-amyloid plaques in a rabbit model of Alzheimer's disease and have advanced the sensitivity of MRI for plaque detection to a new level, allowing clinical field-strength scanners to be employed. We believe extension of these technologies to an in vivo setting in rabbits is feasible and that our results support future work exploring the role of MRI as a leading imaging tool for this debilitating and life-threatening disease

    Outlook: membrane junctions enable the metabolic trapping of fatty acids by intracellular acyl-CoA synthetases

    Get PDF
    The mechanism of fatty acid uptake is of high interest for basic research and clinical interventions. Recently we showed that mammalian long chain fatty acyl-CoA synthetases (ACS) are not only essential enzymes for lipid metabolism but are also involved in cellular fatty acid uptake. Overexpression, RNAi depletion or hormonal stimulation of ACS enzymes lead to corresponding changes of fatty acid uptake. Remarkably, ACS are not localized to the plasma membrane where fatty acids are entering the cell, but are found instead at the endoplasmic reticulum (ER) or other intracellu&#172;lar organelles like mitochondria and lipid droplets. This is in contrast to current models suggesting that ACS enzymes function in complex with transporters at the cell surface. Drawing on recent insights into non-vesicular lipid transport, we suggest a revised model for the cellular fatty acid uptake of mammalian cells which incorporates trafficking of fatty acids across membrane junctions. Intracellular ACS enzymes are then metabolically trapping fatty acids as acyl-CoA derivatives. These local decreases in fatty acid concentration will unbalance the equilibrium of fatty acids across the plasma membrane, and thus provide a driving force for fatty acid uptake

    Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes.

    Get PDF
    Long chain acyl-CoA synthetases are essential enzymes of lipid metabolism, and have also been implicated in the cellular uptake of fatty acids. It is controversial if some or all of these enzymes have an additional function as fatty acid transporters at the plasma membrane. The most abundant acyl-CoA synthetases in adipocytes are FATP1, ACSVL4/FATP4 and ACSL1. Previous studies have suggested that they increase fatty acid uptake by direct transport across the plasma membrane. Here, we used a gain-of-function approach and established FATP1, ACSVL4/FATP4 and ACSL1 stably expressing 3T3-L1 adipocytes by retroviral transduction. All overexpressing cell lines showed increased acyl-CoA synthetase activity and fatty acid uptake. FATP1 and ACSVL4/FATP4 localized to the endoplasmic reticulum by confocal microscopy and subcellular fractionation whereas ACSL1 was found on mitochondria. Insulin increased fatty acid uptake but without changing the localization of FATP1 or ACSVL4/FATP4. We conclude that overexpressed acyl-CoA synthetases are able to facilitate fatty acid uptake in 3T3-L1 adipocytes. The intracellular localization of FATP1, ACSVL4/FATP4 and ACSL1 indicates that this is an indirect effect. We suggest that metabolic trapping is the mechanism behind the influence of acyl-CoA synthetases on cellular fatty acid uptake
    corecore