7,768 research outputs found
A communications model for an ISAS to NASA span link
The authors propose that an initial computer-to-computer communication link use the public packet switched networks (PPSN) Venus-P in Japan and TELENET in the U.S. When the traffic warrants it, this link would then be upgraded to a dedicated leased line that directly connects into the Space Physics Analysis Network (SPAN). The proposed system of hardware and software will easily support migration to such a dedicated link. It therefore provides a cost effective approach to the network problem. Once a dedicated line becomes operation it is suggested that the public networks link and continue to coexist, providing a backup capability
Impact of hypoglycemia on patients with type 2 diabetes mellitus and their quality of life, work productivity, and medication adherence.
BackgroundThe purpose of this study was to determine the characteristics of adults with type 2 diabetes mellitus (T2DM) that correlate with greater risk of hypoglycemia and determine the impact of hypoglycemia on health-related quality of life, work productivity, and medication adherence from a patient perspective.MethodsData from a large web-based survey were retrospectively analyzed. Adults with a diagnosis of T2DM taking antihyperglycemic agents were included in the analysis. Participants with knowledge of their hypoglycemic history were divided into three groups: those experiencing recent hypoglycemia (previous 3 months), those experiencing nonrecent hypoglycemia, and those never experiencing hypoglycemia.ResultsOf the participants with T2DM taking antihyperglycemic agents who were knowledgeable of their hypoglycemia history, 55.7% had ever experienced hypoglycemia. Of those, 52.7% had recent hypoglycemia. Compared with those who never experienced hypoglycemia, those who experienced hypoglycemia tended to: be younger; be more aware of their glycated hemoglobin (HbA1c) levels; have higher HbA1c levels; have a higher body mass index; have higher Charlson Comorbidity Index scores; be on insulin, sulfonylureas, and/or glucagon-like peptide-1 agonists; and be less adherent to their antihyperglycemic agents. Hypoglycemia interfered with social activities, caused more missed work (absenteeism), more impairment while at work (presenteeism), and decreased overall work productivity compared with patients who had never experienced hypoglycemia. Overall health-related quality of life, as determined by the Short Form-36 health questionnaire, was negatively impacted by hypoglycemia. Both Physical and Mental Summary scores were significantly lower for the recent hypoglycemia and nonrecent hypoglycemia groups compared with the never hypoglycemia group.ConclusionHypoglycemia can negatively impact many aspects of life. Greater awareness of those who are at risk for developing hypoglycemia can lead to the development of measures (eg, patient and physician education) to prevent future hypoglycemia episodes
Fluorescent penetration enhancers for transdermal applications
Chemical penetration enhancers are often used to enhance transdermal drug delivery. However, the fundamental mechanisms that govern the interactions between penetration enhancers and skin are not fully understood. Therefore, the goal of this work was to identify naturally fluorescent penetration enhancers (FPEs) in order to utilize well-established fluorescence techniques to directly study the behavior of FPEs within skin. In this study, 12 fluorescent molecules with amphiphilic characteristics were evaluated as skin penetration enhancers. Eight of the molecules exhibited significant activity as skin penetration enhancers, determined using skin current enhancement ratios. In addition, to illustrate the novel, direct, and non-invasive visualization of the behavior of FPEs within skin, three case studies involving the use of two-photon fluorescence microscopy (TPM) are presented, including visualizing glycerol-mitigated and ultrasound-enhanced FPE skin penetration. Previous TPM studies have indirectly visualized the effect of penetration enhancers on the skin by using a fluorescent dye to probe the transdermal pathways of the enhancer. These effects can now be directly visualized and investigated using FPEs. Finally, future studies are proposed for generating FPE design principles. The combination of FPEs with fluorescence techniques represents a useful novel approach for obtaining physical insights on the behavior of penetration enhancers within the skin.National Institutes of Health (U.S.) (Grant EB-00351)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Grant DAAD-19-02-D-002)National Science Foundation (U.S.). Graduate Research FellowshipConselho Nacional de Pesquisas (Brazil)Fundacao de Amparo a Pesquisa do Estado de Sao Paul
Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate
The potential of rigid nanoparticles to serve as transdermal drug carriers can be greatly enhanced by improving their skin penetration. Therefore, the simultaneous application of ultrasound and sodium lauryl sulfate (referred to as US/SLS) was evaluated as a skin pre-treatment method for enhancing the passive transdermal delivery of nanoparticles. We utilized inductively coupled plasma mass spectrometry and an improved application of confocal microscopy to compare the delivery of 10- and 20-nm cationic, neutral, and anionic quantum dots (QDs) into US/SLS-treated and untreated pig split-thickness skin. Our findings include: (a) ~0.01% of the QDs penetrate the dermis of untreated skin (which we quantify for the first time), (b) the QDs fully permeate US/SLS-treated skin, (c) the two cationic QDs studied exhibit different extents of skin penetration and dermal clearance, and (d) the QD skin penetration is heterogeneous. We discuss routes of nanoparticle skin penetration and the application of the methods described herein to address conflicting literature reports on nanoparticle skin penetration. We conclude that US/SLS treatment significantly enhances QD transdermal penetration by 500–1300%. Our findings suggest that an optimum surface charge exists for nanoparticle skin penetration, and motivate the application of nanoparticle carriers to US/SLS-treated skin for enhanced transdermal drug delivery.National Institutes of Health (U.S.) (Grant EB-00351)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Grant DAAD-19-02-D-002)Conselho Nacional de Pesquisas (Brazil)Fundacao de Amparo a Pesquisa do Estado de Sao PauloNational Science Foundation (U.S.). Graduate Research Fellowshi
Effects of ultrasound and sodium lauryl sulfate on the transdermal delivery of hydrophilic permeants: Comparative in vitro studies with full-thickness and split-thickness pig and human skin
The simultaneous application of ultrasound and the surfactant sodium lauryl sulfate (referred to as US/SLS) to skin enhances transdermal drug delivery (TDD) in a synergistic mechanical and chemical manner. Since full-thickness skin (FTS) and split-thickness skin (STS) differ in mechanical strength, US/SLS treatment may have different effects on their transdermal transport pathways. Therefore, we evaluated STS as an alternative to the well-established US/SLS-treated FTS model for TDD studies of hydrophilic permeants. We utilized the aqueous porous pathway model to compare the effects of US/SLS treatment on the skin permeability and the pore radius of pig and human FTS and STS over a range of skin electrical resistivity values. Our findings indicate that the US/SLS-treated pig skin models exhibit similar permeabilities and pore radii, but the human skin models do not. Furthermore, the US/SLS-enhanced delivery of gold nanoparticles and quantum dots (two model hydrophilic macromolecules) is greater through pig STS than through pig FTS, due to the presence of less dermis that acts as an artificial barrier to macromolecules. In spite of greater variability in correlations between STS permeability and resistivity, our findings strongly suggest the use of 700 μm-thick pig STS to investigate the in vitro US/SLS-enhanced delivery of hydrophilic macromolecules.National Institutes of Health (U.S.) (Grant EB-00351)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Grant DAAD-19-02-D-002)National Science Foundation (U.S.). Graduate Research FellowshipConselho Nacional de Pesquisas (Brazil)Fundacao de Amparo a Pesquisa do Estado de Sao Paul
Primordial nucleosynthesis with a varying fine structure constant: An improved estimate
We compute primordial light-element abundances for cases with fine structure
constant alpha different from the present value, including many sources of
alpha dependence neglected in previous calculations. Specifically, we consider
contributions arising from Coulomb barrier penetration, photon coupling to
nuclear currents, and the electromagnetic components of nuclear masses. We find
the primordial abundances to depend more weakly on alpha than previously
estimated, by up to a factor of 2 in the case of ^7Li. We discuss the
constraints on variations in alpha from the individual abundance measurements
and the uncertainties affecting these constraints. While the present best
measurements of primordial D/H, ^4He/H, and ^7Li/H may be reconciled pairwise
by adjusting alpha and the universal baryon density, no value of alpha allows
all three to be accommodated simultaneously without consideration of systematic
error. The combination of measured abundances with observations of acoustic
peaks in the cosmic microwave background favors no change in alpha within the
uncertainties.Comment: Phys. Rev. D accepted version; minor changes in response to refere
Precision Prediction for the Big-Bang Abundance of Primordial Helium
Within the standard models of particle physics and cosmology we have
calculated the big-bang prediction for the primordial abundance of \he to a
theoretical uncertainty of less than 0.1 \pct ,
improving the current theoretical precision by a factor of 10. At this accuracy
the uncertainty in the abundance is dominated by the experimental uncertainty
in the neutron mean lifetime, . The following
physical effects were included in the calculation: the zero and
finite-temperature radiative, Coulomb and finite-nucleon-mass corrections to
the weak rates; order- quantum-electrodynamic correction to the plasma
density, electron mass, and neutrino temperature; and incomplete neutrino
decoupling. New results for the finite-temperature radiative correction and the
QED plasma correction were used. In addition, we wrote a new and independent
nucleosynthesis code designed to control numerical errors to be less than
0.1\pct. Our predictions for the \EL[4]{He} abundance are presented in the form
of an accurate fitting formula. Summarizing our work in one number, . Further,
the baryon density inferred from the Burles-Tytler determination of the
primordial D abundance, , leads to the
prediction: . This ``prediction'' and an accurate measurement of the primeval \he
abundance will allow an important consistency test of primordial
nucleosynthesis.Comment: Replaced fitting formulas - new versions differ by small but
significant amount. Other minor changes. 30 pages, 17 figures, 5 table
- …
