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Some Theoretical Issues

This paper is divided into two parts which are
somewhat independent. The first part of this
paper discusses certain properties of a general
autonomous control model that appears prom-
ising for the analysis of general dynamic sup-
ply response models in agricultural econom-
ics, resource economics, and related fields.
The second part of the paper, which can be
read somewhat independently of the first, em-
phasizes the potential empirical applications
of special cases of the general model discussed
in the first part. In what follows, we always
deal with continuous time and infinite horizon
models because of their analytical tractability.
Extension and modification of our results for
discrete-time, finite-horizon problems should
be fairly obvious and are left to the interested
reader.

A General Model

To facilitate exposition we first concentrate
our analysis upon the dynamic decision mak-
ing of an agricultural or resource-based firm
operating in a world of perfect certainty. The
paper concludes with the discussion of a firm
in an uncertain world that deals with expecta-
tion formation rationally, i.e., according to
some optimization criterion.

The agricultural or resource-based firm is
assumed to solve:

() Max j: e~ [h(x,u) + p(x,a)] dt

subject to x = m(x,u);
Xx(0) = X.

Here XeR™; ueR";, aeR¥; & is a time discount
rate, and h('), p(-), m(-) are single valued,
twice continuously differentiable functions;
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h:R® X R*— R; p:R™ X RE— R; and m:R™ x
R* —> R™. In what follows it is often conve-
nient to assume that h(-) and m(-) are concave
in all their arguments while p is concave in x
and convex in «. However, we shall not em-
ploy these assumptions universally.

In standard parlance, therefore, u is a vector
of control variables that the firm chooses to
maximize its intertemporal objective function
subject to the constraints imposed by the
equations of motion describing the intertem-
poral behavior of the state variables, x; and
the initial value of the state variables. In vari-
ous contexts (as will be clear from latter dis-
cussion) the vector of controls can be thought
of as factors of production, outputs, levels of
investment, consumption, etc. Likewise, the
state vector is subject to a variety of interpre-
tations including levels of fixed capital stock,
crop or livestock inventories, etc.

The optimal value function associated with
(1) shall be denoted as J(x, ) and since we
deal with an infinite horizon, autonomous
problem the associated Hamilton-Jacobi-
Bellman recursion relation assumes a particu-
larly tractable form (see e.g. Kamien and
Schwartz (p. 242)):

) d(x,a) = Ml?.x h(x,u)
+ p(X,a) + V. J(x,&) m(u,x)

where the notation V,J(x,a) denotes the gra-
dient of J(x,a) with respect to x; all vectors
are taken to be conformably defined for mul-
tiplication where appropriate so as to avoid
unnecessary clutter in notation. In what fol-
lows J(x,a) is always assumed to be twice
continuously differentiable.

Equations similar to (2) have been the start-
ing point for most of the recent developments
in dynamic duality theory (Cooper and Mc-
Laren; Epstein) and will provide the basis for
much of what follows. The difference between
the problem we pose and that posed by, say,
Epstein is that we do not restrict p(-) to be
affine in either a or x nor do we restrict m(x,u)



Chambers and Lopez

to be linear or affine in its arguments. We do
assume, however, that both m(x,u) and p(x,a)
are known and well-defined for any x, a,
and u.

The starting point for the analysis is to infer
the properties of J(x,) implied by the
maximization hypothesis. To proceed, how-
ever, it is necessary to introduce the following
related problem:

(3) h*(x,u) = M“in 8J(x,a)
- VJ(x,0) m(u,x) — p(x,a).

If there exists a duality between h(x,u) and
J(x,a), h*(x,u) as derived above will equal the
h(x,u) that generated J(x,a) in (1). Con-
trariwise, if a particular J*(x,a) generates an
h*(x,u) using (3), then if a duality exists the
function derived using h*(x,u) in (2) is
J*(x,a). In the following there is no attempt to
demonstrate a formal duality between h(:) and
J(+). Rather, we content ourselves with outlin-
ing properties of h(x,u) and J(x,a) that are
consistent with a duality. This is particularly
important from an empirical perspective, for
as with the results of static duality theory, an
ability to characterize J(x,a) offers a natural
way to proceed in the empirical specification
of dynamic response systems.

Assume that all of the curvature conditions
previously mentioned for h(x,u) are in force.
Then it is immediate that J(x,a) must be con-
vex in a since the maximum value of any func-
tion convex in a set of parameters must inherit
the convexity property (Dixit). Those of you
familiar with standard results from static dual-
ity theory might suppose that this exhausts the
curvature conditions in « for J(x,a). But as
pointed out by Epstein and others, such is
patently not the case here. For if one is to be
able to solve problem (3) uniquely, i.e., have
any hope of recapturing h(x,u), the second-
order conditions for the minimization problem
should be satisfied. This requires (when eval-
uated at the optimal controls) that

4 8J(x,0) — VJ(x,a) m(u,x) — p(x,a)

be convex in «. Of course, this implies that the
Hessian matrix associated with (4) be positive
semi-definite. Therefore, the conditions re-
quired in the dynamic case are a good bit more
restrictive than in the static case. Now apply
the envelope theorem to (3) to obtain further
that

(5) Vih*(x,u) = 8V,J — V, J(x,a)m(u,x)
- VJ(x,a)Vym(u,x) — pr(x’a)-
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When evaluated at the optimal controls for ex-
pression (2), expression (5) is the familiar
vector-valued equation describing the trajec-
tory of the co-state variables (the vector
V.d(x,a)) for the standard optimal control
problem. If, however, one wants to impose
concavity in X on h(x,u) this implies that ex-
pression (4) itself must be concave in x when
evaluated at the optimal controls.

It may be somewhat difficult in general to
ascertain whether J(x,a) actually possesses
these properties. The problem is considerably
simplified, therefore, when we assume

p(xX,a) = a' X

where now k = m. In this instance, the requi-
site curvature properties on J(Xx,a) are that

8J(x,a) — V, J(x,a) m(u,x)

be convex in « and concave in X.

Assuming that &’ X = p(X,«) also enables us
to make some general comments about the
dynamic stability of the model and how stabil-
ity impinges on J(x,a) as well as how the state
vector varies in the long-run in response to
changes in the vector a (see Chambers and
Lopez for a more complete discussion). When
p(x,a) assumes this particular form applying
the envelope theorem to (2) obtains

SV JIX,0) = X + V,J(x,a) X*.

This expression which is quite important from
an empirical perspective, as latter develop-
ments demonstrate, is obviously a nonlinear
differential equation in the vector x. Ascer-
taining its general dynamic properties is very
difficult and we content ourselves with an ex-
amination of its dynamic behavior in the
neighborhood of the steady state, i.e., where
x* = 0. To do so, it is necessary to assume a
well-defined, steady-state solution exists, and
we do so without.apology.

Now differentiating this expression in the
neighborhood of the steady state with respect
to x yields

Vod(x,0) = U + Vo J(X,) Vix

where U is the identity matrix. Approximating
x in the neighborhood of the steady state
linearly demonstrates that dynamic stability
requires that 8U Vuxd™! be negative
semidefinite and that V,,J be positive definite
if Vo, J is symmetric (see Chambers and Lopez
for the non-symmetric case). Thus, under sta-
bility and the presumption that p(x,a) = a' x:
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in the neighborhood of the steady state. The
shadow price of the ith state variable must be
always increasing in «; and the effect of a
change in @; on the shadow price of the jth
state must equal the effect of a change in o; on
the ith state variable’s shadow price.

The Flexible Accelerator as an
Approximation

Much of the existing empirical literature on dy-
namic capital adjustment, dynamic supply re-
sponse, and consumer behavior relies on some
version of the flexible accelerator. In its most
basic form the flexible accelerator posits that
optimal state-adjustment assumes the form

(6) x* = M(x — x¥)

where superscript (*) is used to denote opti-
mality; M € R® x R™ the elements of which are
now presumed constant; and x* represents
some long-run desired value of the state vec-
tor. Examples of such models are the Ner-
lovian partial-adjustment, supply-response
model, the habit formation model of dynamic
consumer behavior, and the multivariate flexi-
ble accelerator investment model of Nadiri
and Rosen.

Because of its ubiquitous nature much has
been made of the discovery of theoretical
models that generate something like (6) as an
approximation or as an exact representation of
optimal state adjustment. For example, there
is a rather long line of papers (Eisner and
Strotz; Lucas; Treadway; Mortensen) examin-
ing the interrelationships between the flexible
accelerator representation of capital stock ad-
justment and the adjustment cost hypothesis
formulated by Edith Penrose.

Recently, Steigum has demonstrated that a
simple growth model at the firm level where
the firm faces constraints on the rate at which
it can borrow also rationalizes the flexible ac-
celerator as an approximation for optimal in-
vestment plans. With perfect hindsight, how-
ever, this and the other observations are
rather obvious and can be easily seen in the
context of the general model formulated in (1).
The argument starts with the identification
of x* with the steady-state value of x (and
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the presumption x* exists). Optimal state-
adjustment assumes the general form

)

where u* is the vector of optimal controls ex-
pressed as a function of x and «, i.e., u* =
u(x,a). Expanding (7) in a Taylor-series
around the steady state (recall m(u*,x*) = 0)
yields

x* = m(u*,x)

x* = d,m(u*,x*)(x — x*)
+ 3 2mUu*X¥)Nx — X%+ ...

where d, represents the total derivative with
respect to x. To a first order then

(8) x = d,m(u*,x*)(x — x*)
= [Vum(u*yxw)vxu(x9a)
+ V,m(u*,x*)][x - x*].

Expression (8) itself can be approximated
by expression (6) where M = V,m(u*x*)
Vaux,a) + Vym(u*,x*).

By (8), therefore, the ability of the general
model, and therefore of the adjustment cost and
other models which are special cases of (1), to
rationalize the flexible accelerator lies in either
the nonlinearity of m(:) in X or in the effect of x
on the optimal control. In general, therefore, it
seems obvious that a wide variety of models will
be capable of generating the flexible accelerator
as an approximation to the optimal, state-
adjustment mechanism. Cases where the flexi-
ble acceleratoris notan appropriate approxima-
tion seem to be the exception rather than the
rule. Cases when the flexible accelerator is an
exact representation are the subject of the next
section.

Exact Flexible Accelerators

In this section we briefly examine a set of
conditions under which the flexible accelerator
described by (6) is an exact representation of
optimal state-adjustment. In what follows, at-
tention is only given to the case where M is a
constant matrix independent of «. This greatly
simplifies the problem. However, there is an
ever-growing body of literature that utilizes a
generalization of (6) where M is a matrix of
numeric functions of 8 and a. Space does not
permit a detailed treatment of this issue but a
related paper by Chambers and Lopez covers it
in detail.

In what follows, it is convenient to assume
that m = n and further that V,m(u,x)~! exists
everywhere in the domain of m(:). By the im-
plicit function theorem it is then possible to
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solve x = m(u,x) for u in terms of x and X to
get u = g(x,x). Furthermore, also assume that
m = k and that p(x,a) = o' x. With these as-
sumptions in hand rewrite (1) as
Max Jm e h(g(x,x),x) + a' x]dt,
0

s.t. Xx(0) = X,

which is identical to the calculus of variations
problem considered by Treadway in his classic
treatment of the ability of the adjustment cost
model to generate the flexible accelerator as an
exact representation of optimal state adjust-
ment. The problem posed by Treadway was
9)  Max [ e Mf(x,%x) + o x]dt
0
s.t. x(0) = X.

Treadway has demonstrated that for the
problem described by (9) one must have

f(x,x) = ¢(x — M) + bx

where ¢ is a strictly concave function and b is
a vector of constants if the solution is to be
consistent with the flexible accelerator in (6).
In terms of our model it is now immediate that
when m = n = k and p(x,a) = o' x that (1) is
consistent with (6) when

(10) h(x,u) = ¢(x — M'm(u,x))
+ bm(u,x).

Therefore, the flexible accelerator is an
exact representation of the optimal state ad-
justment of the model if the instantaneous
value function h(-) can be written as the com-
bination of the linear sums of the equations of
motion and a concave function of the differ-
ence between the current value of the state
vector and the product of M~! and the equa-
tion of motion. The most important thing to
realize about this result is that it means that in
utilizing the flexible accelerator we are re-
stricting ourselves to cases where the instan-
taneous value function is directly expressible
as a function of the equation of motion.
Hence, there are no exhaustive conditions for
h(x,u), independent of m(x,u), that imply an
exact flexible accelerator.

The fact that the flexible accelerator can
only be generated by a very specific objective
function suggests that the optimal value func-
tions consistent with the flexible accelerator
will assume a very special form. This is easiest
to see in the case where k = m = n = 1; the
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extension to other dimensions is obvious (see
Chambers and Lopez for the more general
case). The Hamiltonian can be written using
(10) in this instance as

H = h(x,u) + V,J(X,a) m(u,Xx)

= ¢(x — m!'m(u,x)) + bm(u,x)
+ V,J(x,a) m(u,x)

By the maximum principle, optimality re-
quires

dH om ] dm
—_—= g M-! +
ou ¢ @) Jdu dx du
+ b _aﬂ = 0’
odu
aJ(X,a) — ' M! am
B el G

b am) ( om )‘1
au au
=¢' (M - b
where z = x — M™Im(x,u). Recognizing that z
= x* when evaluated at the optimum gives
(x,e) _ ' (x) _ b
X M

so that 02J(x,a)/9x* = 0. Therefore, if h(x,u)
assumes the form of (10) which implies an
optimal state adjustment equation of the form
of (6) one must be able to write

11 J(x,0) = ¢(a) X + ()

where ¢(«) and 6(«) are numeric functions of
«. Earlier arguments suggest that they be con-
vex in «a if J(x,a) is to be well behaved in the
sense of being able to generate the original
h(x,u) via (3). Perhaps the most important
thing about this result is that it implies that the
shadow value of the state variable is indepen-
dent of the level of the state variable.

Consistent Aggregation in Dynamic Models

The previous analysis considers the optimiza-
tion decisions of a single economic entity.
Most empirical studies, however, consider
aggregate rather than firm decisions. Since in
dynamic models the initial level of the state
variables are often arbitrarily allocated across
firms, we need to look at the aggregation prob-
lem. The basic problem is to determine the
conditions under which there exists a consis-
tent aggregate or industry, optimal-value func-
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tion which only depends on the aggregate level
of the state variables and not on their distribu-
tion across firms. It is desirable that the aggre-
gate J(+) function satisfy the same restrictions
as these of the micro functions. More formally
the aggregation problem is that of elucidating
the restrictions required for

(12) 1) J(x,a) = 2, (x", ), and

(i)
where J® are the micro or firm-level optimal
value functions; x" is the state vector for firm
h; J is now taken to be the aggregate optimal
value function; and x is the aggregate state
vector. In what follows it is easiest to think of
X as a scalar although the logic for the vector-

valued case is identical.
Differentiating 12(i) with respect to x" gives

X = thh,

ay L ox _

AT (x™, @)
9x  9xh axX '

gxh

That is, the marginal effect of the state vari-
able on the optimal value function of each firm
should be identical and equal to the marginal
effect of aggregate x on the aggregate optimal
value function. Since the level of x" varies
AR
axh
independent of x" foralth = 1, ... M. That is,
the firms’ micro functions should be affine in
X"

(14)

1S

across firms (13) can only be satisfied if

B(xPa) = x"(a) + M(a)
¥Vh=1...M

and, therefore,
(15)

where () = Z,0%a) (see also Epstein and
Denny). The aggregate optimal-value function
should also be affine in the aggregate state
variable. The structures of (14) and (15) imply
that the aggregate optimal-value function is
independent of the distribution of the state
variable across firms. Moreover, it also im-
plies that both the firm-level and aggregate-
level, state adjustment are consistent with a
generalized, flexible accelerator where the ad-
justment matrix depends upon «.

Blackorby and Schworm have specified
slightly weaker aggregation conditions than
(12). Their aggregation conditions are:

(16) (i) J(x,@) = ZJ(x",)
@) X = Xx(x!, x?, —, x4)

T =20 = ¢(a) x + 8a)
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That is, instead of requiring x to be the sum of
all the firm-level state variables, they only re-
quire that there exist some function x(-) of all
the x". The aggregate x then corresponds to a
representative level of the state variable rather
than to the sum of the states (Muellbauer).

Differentiating (16(i)) with respect to x" and
x¥, using (16(ii)) and taking the ratios of those
derivatives:

al  ax
aJ/ox® _ Tox axt _ 9x/oxh
(17) _ = -
a¥/ax oY ox ax/oxk
ax  9xk
h{yh h
_ _axMa)lexh U(x"xY)  Vhk

AT (xk, @) /axk

Therefore, X(-) must be strongly separable
(Chambers and Lopez);

(18) x = F(Z;B,(x")).

Now, differentiate J with respect to x" using
(18):

al _ 8J(x,a) F'(+) - ﬁ'h(xh)

(19) axp ax

aJn

axh(x“,oz) ¥Yh=1,... M
The expression in between the equality signs
depends only on x" and « and is independent
of all other x¥ (k # h) and of x. There exist

inf}nite combinations of functions F’' () and
d

- which satisfy this restriction. One polar
case is when F’ is required to equal one, i.e.,
when x = 3,8y(x;). Blackorby and Schworm
impose this restriction implicitly without
comment or proof. In this case (19) is satisfied
aJ

ax
is affine in x. Using (19) in this instance gives

h
O~ 4@ B'n(xn),

axh

if and only if

is independent of x, i.e., if J

and integration implies
= B(xp) () + 6e).

That is, the same aggregate J functional struc-
ture as with linear aggregation but the J* func-
tions are more general. Note, however, that
since X = Z;8,(x;) one must know the B;()
functions in order to aggregate. Since in many
empirical applications one only has aggregate
data and not firm data, this aggregation rule
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does not seem to be very useful for empirical
studies.

An interesting aspect of this type of aggrega-
tion is that the appropriate specification for
J(-) hinges critically upon the specification of
F(-). To see this differentiate (19) with respect
to x™ to get

2
: J;:;a)‘ F' ()B'nGMF'(1)B' m(x™)

aJ " ! h ! m —_
= F'()B'n(x")B'm(x™) =0

which implies that

00 Flwwlx  F ()

I (x,a)/9x F'()F ()

Clearly, there will exist an infinity of J func-
tions of the general type J = n(x) ¢(a) + O(a)
that satisfy (20) where

v __  F()
' (x) FOF()

Unless further restrictions are placed on either
F or J, this type of aggregation is, therefore,
really quite empty from an empirical perspec-
tive. Of course, such results are not peculiar
to the dynamic model being considered.
Muellbauer finds a similar problem in the stat-
ic consumer case where it is resolved by im-
posing homogeneity conditions that are the
result of the maximization postulate. When
similar restrictions are available, aggregation
restrictions of the type of (16) will have much
more empirical content.

Intertemporal Duality and the Estimation of
Dynamic Production Decisions

This section illustrates the use of duality
theory in the derivation of structural expres-
sions for optimal decisions. As might be
realized from the previous section, obtaining
an explicit solution for even the simplest inter-
temporal optimization problem is extremely
difficult. Fortunately, as in static optimization
one may use duality theory in characterizing
optimal value functions (OVF) and in directly
deriving the optimal behavioral equations by
relatively simple manipulation of a well be-
haved OVF. The major advantage of duality is
that one can postulate a relatively complex,
say, production technology and at the same
time derive by simple methods the associated
behavioral equations.
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A second objective of this section is to illus-
trate the use of duality theory in the derivation
of empirical models for various types of dy-
namic models. Modelling supply responses
when there exist adjustment costs associated
with investments in capital and other factors is
briefly considered. Next we briefly review two
models considering other sources of slow pro-
duction adjustments: financial constraints on
investment and biological constraints on the
harvesting of a natural resource.

Generalized Envelope Relations

Consider a general problem such as (1). As-
sume that p(x,a) is linear, i.e., p = a'Xx and
that x > 0. Under the assumed regularity con-
ditions on h(x,u) and m(x,u), it follows that
J(x,a) should satisfy the following properties:

1. J(x,a) is convex in «;

2. 8l(x,a) — VJ(x,x) m(u*x) is con-

vex in a;

8l(x,&) — V J(X,a¢) m(u*,x) is con-

cave in x;

4. 8J(x,a) — V,J(x,a) m(u*,x)
decreasing in «; and

5. the Hessian of J(X,a) is symmetric in
o and in Xx.

is non-

Properties 1 to 3 were discussed in detail
above. Property 4 follows from the non-
negativity of the state variables, and property
5 is a consequence of the assumption of twice
continuous differentiability of J(*) in x and a.

Differentiating (2) with respect to «, using
the envelope theorem obtains:

22) 8V, J(x,a) = x + V, J(x,a)x*

Equation (22), as noted above, is a system of
differential equations (recall that o and x are
vectors of dimension m). One can, therefore,
solve:

(23) x* = Vo, J(x,0)"1[8V,J(x,&) — x].

Thus, (23) is a generalized version of Shep-
hard’s lemma expressing the optimal state ad-
justments for the firm as a function of the
exogenous variables of the system (a and x).
Since each x* is derived from a J(x,a) with
known properties, one can either test or a
priori impose the properties of J(X,a) sum-
marized in (21) on the estimating system (23).
If in addition, one wants to insure that the
estimated system is dynamically stable in the
neighborhood of the steady state, one can use
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the restrictions earlier derived on V,,J to that
effect. Needless to say, the functions X*; are
related to each other in a systematic manner
which can be imposed in estimation. The
long-run or steady-state level of the state vari-
ables x can also be derived from (22) as

(24) 0Ju(x*,0) — x* = 0.

Thus, as in the static case, by postulating an
appropriate functional form for J(x,a) one can
use (23) to derive estimating equations for the
short-run optimal decisions of the firm as well
as to obtain a characterization of the steady
state.

The Adjustment Cost Model

In the adjustment-cost model, the firm is pre-
sumed to incur adjustment costs when it varies
the level of certain inputs. These costs are
typically assumed increasing and convex in
the level of investment per unit of time. By
impeding instantaneous adjustment, this limits
the growth rate of the firm. That is, the limits
to growth are entirely determined by internal
properties of the firm, and there need exist
no other binding constraints, such as the
availability of investment funds, limiting the
growth capacity of the firm.

For the most general adjustment-cost model
one can write the production function as

Q= Q&.x,h)

where Q is output; X is a vector of fully vari-
able inputs; x is a vector of quasi-fixed inputs;
and I is a vector of investments in quasi-fixed
inputs. Instantaneous variable profits are

g(p,v;x,I) = max {p Q(x,x,I) — vk}

where p is the output price, and v is a vector of
variable input prices. The intertemporal profit
maximizing problem of the firm is:

25 Jp,v,ax) = max

Jw {g(pav;xJ) - ax}e_atdt
o

s.t. x=1- yx, x(0) = X,

where « is now a vector of rental prices of
quasi-fixed inputs and y is a diagonal matrix
with non-negative depreciation rates along the
diagonal. Hence, the rate of depreciation is
presumed exogenous and constant for each
input.

Note that p, v, and a should all be time
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indexed. That is, their values are equal to cur-
rent actual values for t = 0 but for t > 0 they
correspond to expected values. For the time
being we assume static expectations, i.e., ex-
pected prices are equal to current prices.
Taylor recently pointed out some serious de-
fects with such an assumption. We reconsider
expectation problems in a later section.
Clearly (25) is a special case of (1) where the
function m() is linear and equal to I — yx. We
can, therefore, easily specialize our previous
discussion in deriving and characterizing es-
timating behavioral equations of the firm. The
Hamilton-Jacobi equation is (Epstein):

(26) 8J(p,v,a,x) = Max g(p,vix.I)
—ax+ VJ() X.
Using the envelope theorem:

(i) x = Vo ' T [8VJ] + x];
(i) -x=8V,J- V,Jx;and
(i) Q =8V, J—- V,Jx;

where X is the vector of variable inputs, and Q
is output supply. In deriving 27(ii) and 27(iii)
we have used Hotelling’s lemma. Using 27(i)
in 27(ii) and 27(iii) one obtains the set of out-
put supply, input demand, and investment
equations in terms of the exogenous variables
p.v,a and x. The properties of the J(+) function
to be used in the empirical analysis are those
outlined in earlier sections.

What are the implications of consistent
aggregation for the adjustment cost model?
The most important consequence of specifying
a consistent, aggregate, dynamic model is that
the shadow prices of the state variables (J,)
are constant throughout time. In the case of
the adjustment cost model, for example,

Jy=J,x=0

(27)

since a consistent aggregate J function is affine
inx, i.e., I, = 0, irregardless of whether x =
0. Consider now the first-order conditions as-
sociated with this adjustment-cost problem.
Using the maximum principle (at time zero):

i) g+q=0

(i) q=@+y)q+a—g
(i) x=1- 1,

(iv) 1[1_[2 egx =0

(28)

where q = J,. If the conditions for consistent
aggregation are used, it can be shown (Cham-
bers and Lopez) in the case of one state and
one control that
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gulxx — g]x2 =0

which in turn implies that g(-) cannot be
strictly concave in I and x. To estimate consis-
tent aggregate supply, factor demand, and in-
vestment responses one must presume, there-
fore, that the primal profit function is not
strictly concave in I and x and that it meets
these restrictions. Furthermore, using 28(i):

Vil = =V g(+) - Vieg().

Stability requires that the matrix V,I be nega-
tive. In the case of one control and one state
this implies that d%g/dxal be negative.

And J(°) satisfying consistency in aggrega-
tion can be written as

I(p,v,a,Xx) = x ¢(p,v,a) + 6(p,v,®)

Therefore, using (27) the aggregate behavioral
equations are:

i x = M- x);
(29) (i) & = ¢y(p,v,a)* M(x — x*)
+ 860,(p,v,a) — 8¢, (p,v,a) X
(i) Q= —¢p(p,v,a) - M(x— x*)

+ 80,(p,v,a) + 8d,(p,v.a) x;

where [8u + ¢,7'] are the adjustment func-
tions, and x* = [U + 8¢,]! 6, is the steady-
state level of the quasi-fixed factors. Notice
that the optimal investment functions are ex-
pressed in terms of a generalized flexible ac-
celerator where the adjustment functions M
are independent of x. Moreover, the variable
factor demand equations (X) and the output
supply response equations are affine in the
state variables x.

So far we have assumed non-separable, ad-
justment costs. Many empirical research ef-
forts, however, have used separable adjust-
ment cost functions. What are the implications
of imposing consistent aggregation on models
assuming separable adjustment costs? Sepa-
rable adjustment costs imply that g(+) can be
written:

(30)  g(p,vix,I) = A(p,vix) + C(D),

where A(-) satisfies all the properties of a vari-
able profit function and is strictly concave in
x, and C(I) is an increasing, strictly concave
function. If (30) holds, the first order condi-
tions 22(i) and 22(ii) can be written:

(31 (B C(I)+ g=0;and
(i) q=0=0B+y)q+ «
— Ag(p,vix).
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These equations imply that the system must
always be in a steady state with [ = yx* where
X® is the solution to 31(ii) (Chambers and
Lopez). Therefore, the model is truly static
since the dynamic forces vanish. This implies
that consistent aggregation and separable ad-
justment costs are inconsistent hypotheses.
There does not exist a meaningful aggregation
rule when adjustment costs are separable.

Financial Constraints Models

For these models the factors limiting the
growth capacity of a firm are attributed
to the existence of financial constraints rather
than adjustment costs (Steigum; Shalit and
Schmitz; and Chambers and Lopez). Firms
are presumed unable to borrow unlimited
amounts of funds at constant interest rates,
either because the interest rate a firm must pay
increases with the debt/equity ratio or simply
because there is a maximum amount of debt-
per-dollar of equity that financial institutions
are willing to accept. The borrowing capacity
imposes a ceiling on investment. Moreover, it
is assumed that this ceiling is binding. The
financial constraint models are, in a sense,
opposite to adjustment cost models. The
former assumes that investment depends on
the ability of the firm to obtain the necessary
funds to finance its investment desires as well
as on its own wealth or equity levels, while the
latter assumes that firms’ investments are only
limited by the adjustments costs which a firm
must accept when it expands.

Another important feature of models em-
phasizing financial constraints is that they re-
quire a simultaneous modelling of both the
farmer production decisions and the farmer-
household utility maximizing decisions (con-
sumption, labgr supply and savings). This is
because the farmer’s level of wealth deter-
mines his investment capacity, and the level of
wealth, in turn, is closely related to the sav-
ings capacity of a farmer. Therefore, there
exists a close linkage between the farmer’s
capacity and willingness to save and the level
of farm production investment that he can af-
ford. Farmers who have performed better in
the past and, at the same time, who have been
willing to consume less are now in better
shape to expand their farm enterprise than
those who have performed poorly in the past
and/or have not been willing to save as much.

The intertemporal model of the farm-house-
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hold facing financial constraints is (see Cham-
bers and Lopez for details):

Jpw,v.Ey) = Max [ u(e,he d;
! o

(32) s.t. (i) E= p(E,w,v,r) + w(H - )
—pcty;

(ii) E(0) = E,;

where c is consumption; 1 is leisure; H is total
time available for leisure and on-farm and off-
farm work; w is the off-farm wage rate or
opportunity cost of on-farm work; p is now a
price index of consumption foods; v is a vector
of output and input prices; y is fixed non-
labor, non-farm income; E is the level of
wealth or equity of the household; u(:) is a
concave farm-household utility function; and
p(+) is a farm-income function defined by:

p(E,w,v,r) = max {m(v,K,L,)
- wL;, — (K- E) K= B(E) + E};

where () is a farm variable profit function; K
is the farm capital stock; L, is on-farm work
by the farmer; r is the rate of interest on the
farmer’s debt; and B(E) is the maximum debt
of a farmer as an increasing function of his/her
wealth level E. Assume that B'(E) > 0 and
B"(E) < 0 and that the constraint in (32) is
binding, i.e., K = B(E) + E. Moreover, since
ar(*) is increasing and concave in K, p(+) is also
increasing and concave in E.

Note that the only thing impeding instan-
taneous adjustment of the farm capital stock is
the financial constraint dictating the maximum
amount of indebtedness which financial in-
stitutions allow. Also, the input-demand func-
tions and output-supply functions conditional
on a given level of equity E can be obtained by
differentiating p(-):

py=m,=Q; py = —L;;

where Q is a vector of net outputs conditional
on E. The debt function B(E) can be recov-
ered from p by differentiating with respect
tor:

pr = —B(B),

Intertemporal output and input adjustments
are determined by the motion of E,

Q = pycE*; and ‘

K= (1 + B'(E)) E* = (1 — pg) E*
where E* is the solution of (32). The solution
of (32) provides the optimal short-run, farm-

Pre = -B

(33)
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household consumption and leisure levels as
well as the optimal equation of motion of
equity. Of course, one can also obtain the
steady-state solution.

Problem (32) is essentially of the same
structure as the general problem (1) except
that the instantaneous objective function in
(32) is independent of the state variable E
while the equation of motion depends on the
parameter vector. Therefore, we can apply the
same methodology previously described in de-
riving the estimating model. Moreover, there
is no need to rederive the properties of J(-)
here since they only differ slightly from those
discussed in previous sections. The Hamil-
ton-Jacobi-Bellman equation related to prob-
lem (32) is

(34) 8J(p,w,v,E,1r,y) = max u(c,l)
+ () [pEaw.var) + w(H — 1) = pc + y].

Differentiating (34) with respect to y and using
the envelope theorem yields an expression for
the optimal equation of motion E*:

(}5) E* = Jey 78], — JEl.

Next differentiate (34) with respect to w,v,p,
and r to obtain:

(i) 8Jy = JewE* + JgL,;
(i) 8), = Jg E* + JgQ;
(iii) 8J, = JgE* + JgC; and
(iv) 8J; = JgE* + Jgp,;

where L, is off-farm work supplied by the
farm-household. Using (35) in (36) and recall-
ing that K = (1 — pg) E vyields structural
estimating equations for the firm’s decision
variables:

(36)

(B7) () Ly = <= {57,
Jg
= JewJey (8], = Jp)};
(i) Q = -~ {83,
Jg
- JEeré:y_l(‘SJy - JE)};
(iii) ¢ = —- {~5J,
Jg
+ JEpJEy—l(BJy — Ig)}; and
(v) K = {1 - LsJ,
Je

= Jedey 1(8)y — Je)Hey 10Ky — Ji).
Thus, equations (35) and (37) constitute the



Chambers and Lopez

full system of short-run, behavioral equations
of the farm-household. The approach suggests
that production, consumption, savings (E),
and labor supply decisions are interdependent
and should be estimated jointly. The theoreti-
cal properties of the estimating equations are
obtained from the properties of the J(-) func-
tion from which they are derived (Chambers
and Lopez).

What are the implications of consistent
aggregation for the financially-constrained,
farm-household problem? The first order nec-
essary conditions of problem (32) include

(1) U, — JEp = 0;

(i) uy — Jgw = 0;

(iii) JE = (8 — pg)lg; and

(ivy E=p()+wH-1D)—-pc+y.
Consistent aggregation requires that Jgz = 0

and, hence, J; = JgzzE = 0. Therefore, from
(38(iii)):

(38)

pe(E,w,v,r) = §; or
JE =0

at all times. But this is precisely the steady-
state condition (see Chambers and Lopez).
That is, consistent aggregation necessarily im-
plies that the system is in a steady state at all
times. Again it renders the dynamic model
meaningless by imposing a permanent steady
state. Thus, consistent aggregation does not
appear feasible in dynamic models of the
financially-constrained household. The reader
should note that mathematically the financial
constraint model is very similar to the sepa-
rable-adjustment-cost model outlined above.

Biological Models

This section uses a simple model of optimal
fisheries management to illustrate the potential
usefulness of the general model for natural
resource economics. For simplicity, it is as-
sumed that harvest-independent stock growth
is of the logistic form:

rx(1 — x/k);

where r is now the intrinsic growth rate; X is
the stock of the resource; and k is the envi-
ronmental carrying capacity. r,x, and k are
presumed known to the manager of the re-
source as a result of, say, biological sampling
and survey work.

Catch is related to effort and the stock of the
resource by the concave function:
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q = Qx,E),

where q is catch and E is effort. Thus, we
specifically eschew the catch-per-unit-effort
hypothesis in favor of a more general rep-
resentation of the harvest technology. Dual to
Q(-) is the short-run, stock-dependent, cost

function:
¢(q,w,x) = Min {wE:q = Q(E,x)}

wE(q,x),

where w is now the per unit cost of effort, and
E(q,x) is the level of E that solves q = Q(E,x)
for given q and x.

Access to the fishery is strictly regulated
with the manager of the resource determining
optimal harvest levels according to

Max U “e{pq ~ c(q,w,x)]

subject to

x = rx(1 — x/k) — q,
x(0) = X.

Now this problem is somewhat unlike the gen-
eral model since there is, in effect, no p(x,a)
function from which to generate a duality in a
straightforward manner. Therefore, in what
follows we shall content ourselves with rea-
soning that can be based solely on the assump-
tion that there exists a unique solution to this
problem with a unique steady state.

The Hamilton-Jacobi-Bellman equation be-
comes

8J(p,w,x,r,k) = ng {pq — c(q,w,x) + J;x}

Since the solution to the above is the maxi-
mum value of limit of the sum of functions
convex and linearly homogeneous in p and w
J(-) inherits these same properties. More-
over, a direct application of the envelope
theorem yields:

81, = q* + J X%
8J, = —E* + J,.X*; and
8], = Jx* + Lix(1 — x/k);
which allows one to solve for the optimal con-

trols and the optimal stock growth in the fol-
lowing manner:

q* = 81, — T Ju 8T, — Tx(1 — x/K));
E* = J T 1(8), — Jx(1 — x/k)) — 8J,; and
X% = J,18), — Jx(1 — x/k)).

Steady-state stock level is then given by the
solution to the quadratic equation:
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8, — Ix + Jx¥k =0

Unfortunately, this equation cannot be easily
solved since J, and J, will generally depend
upon X in a nonlinear fashion. However, it can
be ascertained that dynamic stability requires
81 (1 — x/k) + J(1 — ax/k) in the neigh-
borhood of the steady state.

Since we lack strong information on the dual
relations for this problem, we continue by
considering the steady-state behavior of catch
and effort. In the steady state

q® = 8],; and
E* = —8J,.
From these expressions we find that
0q” ox”
al = By + Bl -, and
9B = _6wa - 6wa "a_xii
ow aw

Hence, the price-responsiveness of the long-
run controls depends upon two effects: a
pure-price effect (8], and — 8J,,) associated
with a given level of the steady state; and an
expansion effect associated with the adjust-
ment in the steady-state stock level. To ascer-
tain the sign of 9x*/dp, say, it is necessary to
differentiate the equation defining x* im-
plicitly. This is left to the interested reader as
an exercise (the arguments used are similar to
those used in ascertaining the sign of V,,J in
earlier sections). But the reader should note
that the pure-price-effect in the above is con-
sistent with the responses one would usually
expect on the basis of static optimization
theory since J is convex and linearly homoge-
neous in p and w, Letting the steady-state
values of q and E be expressed as

qQ° = qx*,p,w), and
E* = E(x",p,w),

this last result can be summarized by the ex-
pressions:

q(x®,tp,tw) = 0,
E(x~,tp,tw) = 0,
9q(x”,p,w) =0

ap

SE(X™,0.%) _ 4 and
ow -

aq(x*,p,w) _ _ JdE(x*,p,w)
ow op '

NJARE

Thus, the pure-price effects obey the standard
Samuelson homogeneity and reciprocity rela-
tionships. Similar results have been obtained
in a paper by Chambers and are attributable to
the fact that J(-) is here convex and linearly
homogeneous in p and w.

Since this problem is specifically aggregate
in nature, it seems somewhat vacuous to con-
sider here the question of consistent aggrega-
tion. However, we do wish to pursue the im-
plications of the flexible accelerator for this
model. By (10) the instantaneous value func-
tion is consistent with the EFA if it satisfies
the following implicit equation:

pq — c(q,w,x) — ¢(x — M7'rx(1 — xk) + q)
- b(rx(1 — xk) — q) = 0.

Differentiating with respect to q yields:

e g + b =0;
aq 0z
and again
S P
aq* 0z?

which reveals a fundamental link between the
curvature of ¢ and ¢ that should be satisfied if
the model is to be consistent with the flexible
accelerator.

Static Expectations Without Apology

So far we have consistently assumed static
expectations, i.e., that producers expect cur-
rent prices to prevail in the future. How re-
strictive is this assumption? We argue here
that if outputs and inputs are storable and if
storage costs are small enough in relation to
the value of commodities then there is little
loss of generality in assuming static expecta-
tions. The argument here is quite similar and
in places identical to Working’s theory of
futures-price formation.

Consider a situation where there exists a
divergence between the current price of a
commodity and the price that producers ex-
pect for the future. If producers or inter-
mediaries are rational, they will participate in
the commodity market whenever there is a
profit potential. That is, if their discounted
expected price is higher than the current price
by more than the marginal storage cost, they
will buy at current prices and accumulate in-
ventories to be sold at a later date. This buying
will persist until no potential profit is possible,
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that is, until the current price increases
sufficiently. This occurs when the current
price equals the discounted expected price
minus the marginal storage costs. The oppo-
site will occur if expected prices are lower
than current prices. Existence of well devel-
oped commodity markets (not necessarily of
futures markets) is sufficient to insure that this
equilibrium between current and expected
prices is rapidly achieved. A rational producer
will be aware of these equilibrating forces and
will consider current prices minus (plus) an
appropriate premium for storage costs as an
appropriate proxy for discounted future prices
even if he does not participate in the commod-
ity market. If storage costs for the relevant
period are negligible as a proportion of the unit
value of the commodity then the current price
is a good proxy for the discounted expected
price. If storage costs are not negligible but
constant, i.e., independent of commodity in-
ventories, then knowledge of the unit inven-
tory cost (and the discount rate) is all that is
required in order to determine a relationship
between expected and current prices:

E(p)) =1+ 8)p + a

where a is the unit marginal cost of inventory
holding, p, is current price and E(p,,) is the
price expected to prevail at time t + 1.

The key observation is that if commodity
markets exist, any new information will be
absorbed by the market participants leading to
incipient transactions to reestablish the above
equilibrium conditions. Actually if all partici-
pants have identical expectations, there will
be no transactions, current prices will be bid
up immediately to levels consistent with the
change in expectations. If producers have dif-
ferent expectations, the current price will re-
flect a representative expected price. Note
that the previous analysis is independent of
whether producers form their expectations ac-
cording to the rational expectation hypothesis
or not. The problem of whether producers fol-
low rational expectation rules or not is irrele-
vant from the point of view of modelling dy-
namic supply responses. All that is needed is
an estimate of the storage costs in order to
derive expected prices from knowledge of cur-
rent prices and the discount rate only.

Obviously these arguments seem most ap-
plicable to the agricultural examples consid-
ered above and somewhat less applicable to
the fisheries example considered. But even in
the absence of this argument it seems reason-
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able to believe that static expectations may
very well be rational or more correctly opti-
mal. The ultimate bedrock of the rational ex-
pectations hypothesis is the neoclassical pos-
tulate that economic agents optimize and that
their optimization behavior carries them to the
point where they discover the ultimate struc-
tural relations determining the stochastic be-
havior of prices. All this is fine and well, but in
implementing this hypothesis it is often forgot-
ten that the process of acquiring information is
not costless (Stigler) and further that the in-
formation acquiring process and production
decisions usually proceed jointly. Thus, there
is a joint maximization process being carried
out. But how often does one actually see the
act of acquiring information enter into empiri-
cal models relying on the rational expectations
hypothesis? More usually when such matters
are recognized (as Lucas and Sargent clearly
do in their classic overview of the rational
expectations literature) it is swept under the
rug in favor of the more extreme, linear-
quadratic representation of the rational firm
that is analytically tractable. It seems plausi-
ble that for many small to medium-sized eco-
nomic agents the process of information ac-
quisition may be extremely costly. And it may
well be rational to rely on static expectations.
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