105 research outputs found

    Fatal Human Infection with Rabies-related Duvenhage Virus, South Africa

    Get PDF
    Duvenhage virus was isolated from a patient who died of a rabieslike disease after being scratched by a bat early in 2006. This occurred ≈80 km from the site where the only other known human infection with the virus had occurred 36 years earlier

    Metabolic activation of CaMKII by coenzyme A

    Get PDF
    Active metabolism regulates oocyte cell death via calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated phosphorylation of caspase-2, but the link between metabolic activity and CaMKII is poorly understood. Here we identify coenzyme A (CoA) as the key metabolic signal that inhibits Xenopus laevis oocyte apoptosis by directly activating CaMKII. We found that CoA directly binds to the CaMKII regulatory domain in the absence of Ca(2+) to activate CaMKII in a calmodulin-dependent manner. Furthermore, we show that CoA inhibits apoptosis not only in X. laevis oocytes but also in Murine oocytes. These findings uncover a direct mechanism of CaMKII regulation by metabolism and further highlight the importance of metabolism in preserving oocyte viability

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Human brain effects of DMT assessed via EEG-fMRI.

    Get PDF
    Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors

    Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration.

    Get PDF
    Understanding the molecular mechanisms that promote successful tissue regeneration is critical for continued advancements in regenerative medicine. Vertebrate amphibian tadpoles of the species Xenopus laevis and Xenopus tropicalis have remarkable abilities to regenerate their tails following amputation, through the coordinated activity of numerous growth factor signalling pathways, including the Wnt, Fgf, Bmp, Notch and TGF-β pathways. Little is known, however, about the events that act upstream of these signalling pathways following injury. Here, we show that Xenopus tadpole tail amputation induces a sustained production of reactive oxygen species (ROS) during tail regeneration. Lowering ROS levels, using pharmacological or genetic approaches, reduces the level of cell proliferation and impairs tail regeneration. Genetic rescue experiments restored both ROS production and the initiation of the regenerative response. Sustained increased ROS levels are required for Wnt/β-catenin signalling and the activation of one of its main downstream targets, fgf20 (ref. 7), which, in turn, is essential for proper tail regeneration. These findings demonstrate that injury-induced ROS production is an important regulator of tissue regeneration

    Agribusiness Sheep Updates - 2004 part 2

    Get PDF
    Precision Pastures Using Species Diversity to Improve Pasture Performance Anyou Liu and Clinton Revell, Department of Agriculture, Western Australia New Annual Pasture Legumes for Sheep Graziers Phil Nichols, Angelo Loi, Brad Nutt and Darryl McClements Department of Agriculture Western Australia Pastures from Space – Can Satellite Estimates of Pasture Growth Rate be used to Increase Farm Profit? Lucy Anderton, Stephen Gherardi and Chris Oldham Department of Agriculture Western Australia Summer-active Perennial Grasses for Profitable Sheep Production Paul Sanford and John Gladman, Department of Agriculture, Western Australia Pastures From Space – Validation Of Predictions Of Pasture Growth Rates DONALD, G.E.A, EDIRISINGHE, A.A, HENRY, D.A.A, MATA, G.A, GHERARDI, S.G.B, OLDHAM, C.M.B, GITTINS, S.P.B AND SMITH, R. C. G.C ACSIRO, Livestock Industries, PMB 5, Wembley, WA, 6913. BDepartment of Agriculture Western Australia, Bentley, WA, 6983. C Department of Land Information Western Australia, Floreat, WA, 6214. Production and Management of Biserrula Pasture - Managing the Risk of Photosensitivity Dr Clinton Revell and Roy Butler, Department of Agriculture Western Australia Meat Quality of Sheep Grazed on a Saltbush-based Pasture Kelly Pearce1,2, David Masters1, David Pethick2, 1 CSIRO LIVESTOCK INDUSTRIES, WEMBLEY, WA 2 SCHOOL OF VETERINARY AND BIOMEDICAL SCIENCE, MURDOCH UNIVERSITY, MURDOCH, WA Precision Sheep Lifetime Wool – Carryover Effects on Subsequent Reproduction of the Ewe Flock Chris Oldham, Department of Agriculture Western Australia Andrew Thompson, Primary Industries Research Victoria (PIRVic), Dept of Primary Industries, Hamilton, Vic Ewe Productivity Trials - a Linked Analysis Ken Hart, Johan Greeff, Department of Agriculture Western Australia, Beth Paganoni, School of Animal Biology, Faculty of Natural and Agricultural Sciences, University of Western Australia. Grain Finishing Systems For Prime Lambs Rachel Kirby, Matt Ryan, Kira Buttler, Department of Agriculture, Western Australia The Effects of Nutrition and Genotype on the Growth and Development, Muscle Biochemistry and Consumer Response to Lamb Meat David Pethick, Department of Veterinary Science, Murdoch University, WA, Roger Heggarty and David Hopkins, New South Wales Agriculture ‘Lifetime Wool’ - Effects of Nutrition During Pregnancy and Lactation on Mortality of Progeny to Hogget Shearing Samantha Giles, Beth Paganoni and Tom Plaisted, Department of Agriculture Western Australia, Mark Ferguson and Darren Gordon, Primary Industries Research Victoria (PIRVic), Dept of Primary Industries, Hamilton, Vic Lifetime Wool - Target Liveweights for the Ewe Flock J. Young, Farming Systems Analysis Service, Kojonup, C. Oldham, Department of Agriculture Western Australia, A. Thompson, Primary Industries Research Victoria (PIRVic), Hamilton, VIC Lifetime Wool - Effects of Nutrition During Pregnancy and Lactation on the Growth and Wool Production of their Progeny at Hogget Shearing B. Paganoni, University of Western Australia, Nedlands WA, C. Oldham, Department of Agriculture Western Australia, M. Ferguson, A. Thompson, Primary Industries Research Victoria (PIRVic), Hamilton, VIC RFID Technology – Esperance Experiences Sandra Brown, Department of Agriculture Western Australia The Role of Radio Frequency Identification (RFID) Technology in Prime Lamb Production - a Case Study. Ian McFarland, Department of Agriculture, Western Australia. John Archer, Producer, Narrogin, Western Australia Win with Twins from Merinos John Milton, Rob Davidson, Graeme Martin and David Lindsay The University of Western Australia Precision Sheep Need Precision Wool Harvesters Jonathan England, Castle Carrock Merinos, Kingston SE, South Australia Business EBVs and Indexes – Genetic Tools for your Toolbox Sandra Brown, Department of Agriculture Western Australia Green Feed Budget Paddock Calculator Mandy Curnow, Department of Agriculture Western Australia Minimising the Impact of Drought - Evaluating Flock Recovery Options using the ImPack Model Karina P. Wood, Ashley K. White, B. Lloyd Davies, Paul M. Carberry, NSW Department of Primary Industries (NSW DPI), Lifetime Wool - Modifying GrazFeed® for WA Mike Hyder, Department of Agriculture Western Australia , Mike Freer, CSIRO Plant Industry, Canberra, A.C.T. , Andrew van Burgel, and Kazue Tanaka, Department of Agriculture Western Australia Profile Calculator – A Way to Manage Fibre Diameter Throughout the Year to Maximise Returns Andrew Peterson, Department of Agriculture, Western Australia Pasture Watch - a Farmer Friendly Tool for Downloading and Analysing Pastures from Space Data Roger Wiese,Fairport Technologies International, South Perth, WA, Stephen Gherardi, BDepartment of Agriculture Western Australia, Gonzalo Mata, CCSIRO, Livestock Industries, Wembley, Western Australia, and Chris Oldham, Department of Agriculture Western Australia Sy Sheep Cropping Systems An Analysis of a Cropping System Containing Sheep in a Low Rainfall Livestock System. Evan Burt, Amanda Miller, Anne Bennett, Department of Agriculture, Western Australia Lucerne-based Pasture for the Central Wheatbelt – is it Good Economics? Felicity FluggeA, Amir AbadiA,B and Perry DollingA,B,A CRC for Plant-based Management of Dryland Salinity: BDept. of Agriculture, WA Sheep and Biserrula can Control Annual Ryegrass Dean Thomas, John Milton, Mike Ewing and David Lindsay, The University of WA, Clinton Revell, Department of Agriculture, Western Australia Sustainable Management Pasture Utilisation, Fleece Weight and Weaning Rate are Integral to the Profitability of Dohnes and SAMMs. Emma Kopke,Department of Agriculture Western Australia, John Young, Farming Systems Analysis Service Environmental Impact of Sheep Confinement Feeding Systems E A Dowling and E K Crossley, Department of Agriculture, Western Australia Smart Grazing Management for Production and Environmental Outcomes Dr Brien E (Ben) Norton, Centre for the Management of Arid Environments, Curtin University of Technology, WA Common Causes of Plant Poisoning in the Eastern Wheatbelt of Western Australia. Roy Butler, Department of Agriculture, Western Australia Selecting Sheep for Resistance to Worms and Production Trait Responses John Karlsson, Johan Greeff, Department of Agriculture, Western Australia, Geoff Pollott, Imperial College, London UK Production and Water Use of Lucerne and French Serradella in Four Soil Types, Diana Fedorenko1,4, Darryl McClements2,4 and Robert Beard3,4, 12Department of Agriculture, Western Australia; 3Farmer, Meckering; 4CRC for Plant-based Management of Dryland Salinity. Worm Burdens in Sheep at Slaughter Brown Besier, Department of Agriculture Western Australia, Una Ryan, Caroline Bath, Murdoch Universit

    Identification of diagnostic serum protein profiles of glioblastoma patients

    Get PDF
    Diagnosis of a glioblastoma (GBM) is triggered by the onset of symptoms and is based on cerebral imaging and histological examination. Serum-based biomarkers may support detection of GBM. Here, we explored serum protein concentrations of GBM patients and used data mining to explore profiles of biomarkers and determine whether these are associated with the clinical status of the patients. Gene and protein expression data for astrocytoma and GBM were used to identify secreted proteins differently expressed in tumors and in normal brain tissues. Tumor expression and serum concentrations of 14 candidate proteins were analyzed for 23 GBM patients and nine healthy subjects. Data-mining methods involving all 14 proteins were used as an initial evaluation step to find clinically informative profiles. Data mining identified a serum protein profile formed by BMP2, HSP70, and CXCL10 that enabled correct assignment to the GBM group with specificity and sensitivity of 89 and 96%, respectively (p < 0.0001, Fischer’s exact test). Survival for more than 15 months after tumor resection was associated with a profile formed by TSP1, HSP70, and IGFBP3, enabling correct assignment in all cases (p < 0.0001, Fischer’s exact test). No correlation was found with tumor size or age of the patient. This study shows that robust serum profiles for GBM may be identified by data mining on the basis of a relatively small study cohort. Profiles of more than one biomarker enable more specific assignment to the GBM and survival group than those based on single proteins, confirming earlier attempts to correlate single markers with cancer. These conceptual findings will be a basis for validation in a larger sample size

    Why Is There a Lack of Consensus on Molecular Subgroups of Glioblastoma? Understanding the Nature of Biological and Statistical Variability in Glioblastoma Expression Data

    Get PDF
    Gene expression patterns characterizing clinically-relevant molecular subgroups of glioblastoma are difficult to reproduce. We suspect a combination of biological and analytic factors confounds interpretation of glioblastoma expression data. We seek to clarify the nature and relative contributions of these factors, to focus additional investigations, and to improve the accuracy and consistency of translational glioblastoma analyses.We analyzed gene expression and clinical data for 340 glioblastomas in The Cancer Genome Atlas (TCGA). We developed a logic model to analyze potential sources of biological, technical, and analytic variability and used standard linear classifiers and linear dimensional reduction algorithms to investigate the nature and relative contributions of each factor.Commonly-described sources of classification error, including individual sample characteristics, batch effects, and analytic and technical noise make measurable but proportionally minor contributions to inconsistent molecular classification. Our analysis suggests that three, previously underappreciated factors may account for a larger fraction of classification errors: inherent non-linear/non-orthogonal relationships among the genes used in conjunction with classification algorithms that assume linearity; skewed data distributions assumed to be Gaussian; and biologic variability (noise) among tumors, of which we propose three types.Our analysis of the TCGA data demonstrates a contributory role for technical factors in molecular classification inconsistencies in glioblastoma but also suggests that biological variability, abnormal data distribution, and non-linear relationships among genes may be responsible for a proportionally larger component of classification error. These findings may have important implications for both glioblastoma research and for translational application of other large-volume biological databases

    Stochastic Modeling of B Lymphocyte Terminal Differentiation and Its Suppression by Dioxin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Upon antigen encounter, naïve B lymphocytes differentiate into antibody-secreting plasma cells. This humoral immune response is suppressed by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other dioxin-like compounds, which belong to the family of aryl hydrocarbon receptor (AhR) agonists.</p> <p>Results</p> <p>To achieve a better understanding of the immunotoxicity of AhR agonists and their associated health risks, we have used computer simulations to study the behavior of the gene regulatory network underlying B cell terminal differentiation. The core of this network consists of two coupled double-negative feedback loops involving transcriptional repressors Bcl-6, Blimp-1, and Pax5. Bifurcation analysis indicates that the feedback network can constitute a bistable system with two mutually exclusive transcriptional profiles corresponding to naïve B cells and plasma cells. Although individual B cells switch to the plasma cell state in an all-or-none fashion when stimulated by the polyclonal activator lipopolysaccharide (LPS), stochastic fluctuations in gene expression make the switching event probabilistic, leading to heterogeneous differentiation response among individual B cells. Moreover, stochastic gene expression renders the dose-response behavior of a population of B cells substantially graded, a result that is consistent with experimental observations. The steepness of the dose response curve for the number of plasma cells formed vs. LPS dose, as evaluated by the apparent Hill coefficient, is found to be inversely correlated to the noise level in Blimp-1 gene expression. Simulations illustrate how, through AhR-mediated repression of the AP-1 protein, TCDD reduces the probability of LPS-stimulated B cell differentiation. Interestingly, stochastic simulations predict that TCDD may destabilize the plasma cell state, possibly leading to a reversal to the B cell phenotype.</p> <p>Conclusion</p> <p>Our results suggest that stochasticity in gene expression, which renders a graded response at the cell population level, may have been exploited by the immune system to launch humoral immune response of a magnitude appropriately tuned to the antigen dose. In addition to suppressing the initiation of the humoral immune response, dioxin-like compounds may also disrupt the maintenance of the acquired immunity.</p
    corecore