75 research outputs found

    Wind pressures on buildings

    Get PDF
    Fall 1976.CER76-77REA-JEC15.Includes bibliographical references.National Science Foundation Grants ENG72-04260-A01 and ENG76-03035

    Quenching and the UVJ Diagram in the SIMBA Cosmological Simulation

    Full text link
    Over the past decade, rest-frame color–color diagrams have become popular tools for selecting quiescent galaxies at high redshift, breaking the color degeneracy between quiescent and dust-reddened star-forming galaxies. In this work, we study one such color–color selection tool—the rest-frame U − V versus V − J diagram—by employing mock observations of cosmological galaxy formation simulations. In particular, we conduct numerical experiments assessing both trends in galaxy properties in UVJ space and the color–color evolution of massive galaxies as they quench at redshifts z ∼ 1–2. We find that our models broadly reproduce the observed UVJ diagram at z = 1–2, including (for the first time in a cosmological simulation) reproducing the population of extremely dust-reddened galaxies in the top right of the UVJ diagram. However, our models primarily populate this region with low-mass galaxies and do not produce as clear a bimodality between star-forming and quiescent galaxies as is seen in observations. The former issue is due to an excess of dust in low-mass galaxies and relatively gray attenuation curves in high-mass galaxies, while the latter is due to the overpopulation of the green valley in simba. When investigating the time evolution of galaxies on the UVJ diagram, we find that the quenching pathway on the UVJ diagram is independent of the quenching timescale, and instead dependent primarily on the average specific star formation rate in the 1 Gyr prior to the onset of quenching. Our results support the interpretation of different quenching pathways as corresponding to the divergent evolution of post-starburst and green valley galaxies

    Cryptorchidism in the orl rat is associated with muscle patterning defects in the fetal gubernaculum and altered hormonal signaling

    Get PDF
    Cryptorchidism, or undescended testis, is a common male genital anomaly of unclear etiology. Hormonal stimulation of the developing fetal gubernaculum by testicular androgens and insulin-like 3 (INSL3) is required for testicular descent. In studies of the orl fetal rat, one of several reported strains with inherited cryptorchidism, we studied hormone levels, gene expression in intact and hormone-stimulated gubernaculum, and imaging of the developing cremaster muscle facilitated by a tissue clearing protocol to further characterize development of the orl gubernaculum. Abnormal localization of the inverted gubernaculum was visible soon after birth. In the orl fetus, testicular testosterone, gubernacular androgen-responsive transcript levels, and muscle-specific gene expression were reduced. However, the in vitro transcriptional response of the orl gubernaculum to androgen was largely comparable to wild type (wt). In contrast, increases in serum INSL3, gubernacular INSL3-responsive transcript levels, expression of the INSL3 receptor, Rxfp2, and the response of the orl gubernaculum to INSL3 in vitro all suggest enhanced activation of INSL3/RXFP2 signaling in the orl rat. However, DNA sequence analysis did not identify functional variants in orl Insl3. Finally, combined analysis of the present and previous studies of the orl transcriptome confirmed altered expression of muscle and cellular motility genes, and whole mount imaging revealed aberrant muscle pattern formation in the orl fetal gubernaculum. The nature and prevalence of developmental muscle defects in the orl gubernaculum are consistent with the cryptorchid phenotype in this strain. These data suggest impaired androgen and enhanced INSL3 signaling in the orl fetus accompanied by defective cremaster muscle development

    Cardiac Tissue Engineering: Implications for Pediatric Heart Surgery

    Get PDF
    Children with severe congenital malformations, such as single-ventricle anomalies, have a daunting prognosis. Heart transplantation would be a therapeutic option but is restricted due to a lack of suitable donor organs and, even in case of successful heart transplantation, lifelong immune suppression would frequently be associated with a number of serious side effects. As an alternative to heart transplantation and classical cardiac reconstructive surgery, tissue-engineered myocardium might become available to augment hypomorphic hearts and/or provide new muscle material for complex myocardial reconstruction. These potential applications of tissue engineered myocardium will, however, impose major challenges to cardiac tissue engineers as well as heart surgeons. This review will provide an overview of available cardiac tissue-engineering technologies, discuss limitations, and speculate on a potential application of tissue-engineered heart muscle in pediatric heart surgery

    Can Tissue Engineering Mend Broken Hearts?

    No full text

    Corrigendum

    No full text

    Computation of power spectral densities and correlations using digital FFT techniques

    No full text
    December 1975.CER75-76REA-JAP13.Includes bibliographical references.Sponsored by National Science Foundation, Grant ENG72-04261-A01
    corecore