53 research outputs found

    A HIF1α Regulatory Loop Links Hypoxia and Mitochondrial Signals in Pheochromocytomas

    Get PDF
    Pheochromocytomas are neural crest–derived tumors that arise from inherited or sporadic mutations in at least six independent genes. The proteins encoded by these multiple genes regulate distinct functions. We show here a functional link between tumors with VHL mutations and those with disruption of the genes encoding for succinate dehydrogenase (SDH) subunits B (SDHB) and D (SDHD). A transcription profile of reduced oxidoreductase is detected in all three of these tumor types, together with an angiogenesis/hypoxia profile typical of VHL dysfunction. The oxidoreductase defect, not previously detected in VHL-null tumors, is explained by suppression of the SDHB protein, a component of mitochondrial complex II. The decrease in SDHB is also noted in tumors with SDHD mutations. Gain-of-function and loss-of-function analyses show that the link between hypoxia signals (via VHL) and mitochondrial signals (via SDH) is mediated by HIF1α. These findings explain the shared features of pheochromocytomas with VHL and SDH mutations and suggest an additional mechanism for increased HIF1α activity in tumors

    Re-visiting Meltsner: Policy Advice Systems and the Multi-Dimensional Nature of Professional Policy Analysis

    Get PDF
    10.2139/ssrn.15462511-2

    Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    Get PDF
    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC-βI. However, the junk-food diet also increased SGLT1 and SGLT2 levels at the proximal tubule BBM. Glucose reabsorption across the proximal tubule BBM, via GLUT2, SGLT1 and SGLT2, is not solely dependent on glycaemic status, but is also influenced by diet-induced changes in glucose metabolism. We conclude that different metabolic disturbances result in complex adaptations in renal glucose transporter protein levels and function

    Studies of the control of plasma aldosterone concentration in normal man: I. Response to posture, acute and chronic volume depletion, and sodium loading

    No full text
    The peripheral plasma levels of aldosterone, renin activity (PRA), potassium, corticosterone, cortisol, and in some cases angiotensin II, were measured in normal subjects undergoing postural changes, acute diuretic-induced volume depletion, and alterations in dietary sodium. On a 10 mEq sodium/100 mEq potassium intake, subjects supine for 3 consecutive days had identical diurnal patterns of PRA, angiotensin II, aldosterone, cortisol, and corticosterone, with peaks at 8 a.m. and nadirs at 11 p.m. With an increase in sodium intake to 200 mEq, plasma levels of aldosterone and PRA fell to one-third their previous levels but the diurnal pattern in supine subjects was unchanged and again parallel to that of cortisol and corticosterone. There was no diurnal variation of plasma potassium on either sodium intake in the supine subjects. On a 10 mEq sodium/100 mEq potassium intake, supine 8 a.m. plasma aldosterone (55±7 ng/100 ml) and PRA (886±121 ng/100 ml per 3 hr) increased by 150-200% after subjects were upright for 3 hr. However, even though the patients maintained an upright activity pattern, there was a significant fall in plasma aldosterone to 33±5 ng/100 ml at 11 p.m. Potassium levels varied in a fashion parallel to aldosterone and PRA. Plasma cortisol and corticosterone had a diurnal pattern similar to that found in supine subjects. In response to acute diuretic-induced volume depletion, the nocturnal fall in aldosterone levels did not occur. The 11 p.m. value (102±20 ng/100 ml) and the 8 a.m. value postdiuresis (86±15 ng/100 ml) were both significantly greater than the prediuresis levels. PRA showed a similar altered pattern while potassium levels fell throughout the day. In some but not all studies, changes in plasma aldosterone coincided with changes in plasma cortisol, corticosterone, and/or potassium. However, in all studies, changes in plasma aldosterone were invariably associated with parallel changes in plasma renin activity and/or angiotensin II levels. These findings support the concept that PRA is the dominant factor in the control of aldosterone when volume and/or dietary sodium is altered in normal man

    Effect of Hydrophobic Surfactant Proteins SP-B and SP-C on Binary Phospholipid Monolayers: II. Infrared External Reflectance-Absorption Spectroscopy

    No full text
    In situ external reflection infrared spectroscopy at the air-water interface was used to study the influence on phospholipid structure of an endogenous mixture of the two hydrophobic surfactant proteins, SP-B and SP-C, which are thought to play pivotal roles in the adsorption and function of pulmonary surfactant. Mixtures studied were 1:1, 2:1, and 7:1 (mol:mol) DPPC-d(62):DPPG, and 7:1 DPPC-d(62):DOPG, alone and in the presence of 0.5–10 wt % mixed SP-B/C purified chromatographically from calf lung surfactant extract. Perdeuteration of DPPC produced a shift in vibrational frequencies so that it could be differentiated spectroscopically from the phosphoglycerol component in the surface monolayer. CH(2) antisymmetric and symmetric stretching bands (∼2920 and 2852 cm(−1)) along with the analogous CD(2) stretching bands (∼2194 and 2089 cm(−1)) were analyzed, and band heights and peak wavenumber positions were assessed as a function of monolayer surface pressure. Small, near-physiological contents of 1–2 wt % SP-B/C typically produced the maximum observed spectroscopic effects, which were abolished at high protein contents of 10 wt %. Analysis of CH(2) and CD(2) stretching bands and C-H/C-D band height ratios indicated that SP-B/C affected PC and PG lipids differently within the surface monolayer. SP-B/C had preferential interactions with DPPG in 1:1, 2:1, and 7:1 DPPC-d(62):DPPG films that increased its acyl chain order. SP-B/C also interacted specifically with DOPG in 7:1 DPPC-d(62):DOPG monolayers, but in this case an increase in CH(2) band heights and peak wavenumber positions indicated a further disordering of the already fluid DOPG acyl chains. CD(2) band height and peak wavenumber analysis indicated that SP-B/C had no significant effect on the structure of DPPC-d(62) chains in 7:1 films with DPPG or DOPG, and had only a slight tendency to increase the acyl chain order in 1:1 films of DPPC-d(62):DPPG. SP-B/C had no significant effect on DPPC-d(62) structure in films with DOPG. Infrared results also indicated that interactions involving SP-B/C and lipids led to exclusion of PC and PG lipids from the compressed interfacial monolayer, in agreement with our previous report on the phase morphology of lipid monolayers containing 1 wt % SP-B/C
    corecore