878 research outputs found

    Preliminary Photomicrographic Studies of Fuel Sprays

    Get PDF
    Photomicrographs were taken of fuel sprays injected into air at various densities for the purpose of studying the spray structure and the stages in the atomization of the fuel. The photomicrographs were taken at magnifying powers of 2.5, 3.25, and 10, using a spark discharge of very short duration for illumination. The results indicate that the theory advanced by Dr. R. A. Castleman, Jr., on the atomization of fuel in carburetors may also be applied to the atomization of fuel sprays of the solid-injection type. The fuel leaves the nozzle as a solid column, is ruffled and then torn into small, irregular ligaments by the action of the air. These ligaments are then quickly broken up into drops by the surface tension of the fuel. The photomicrographs also show that the dispersion of a fuel spray at a given distance from the nozzle increases with an increase in the jet velocity or an increase in the air density. The first portions of fuel sprays injected from an automatic injection valve into air at atmospheric density have a much greater dispersion than the later portions, but this difference decreases rapidly as the air density is increased

    What is a good medical decision? A research agenda guided by perspectives from multiple stakeholders

    Get PDF
    Informed and shared decision making are critical aspects of patient-centered care, which has contributed to an emphasis on decision support interventions to promote good medical decision making. However, researchers and healthcare providers have not reached a consensus on what defines a good decision, nor how to evaluate it. This position paper, informed by conference sessions featuring diverse stakeholders held at the 2015 Society of Behavioral Medicine and Society for Medical Decision Making annual meetings, describes key concepts that influence the decision making process itself and that may change what it means to make a good decision: interpersonal factors, structural constraints, affective influences, and values clarification methods. This paper also proposes specific research questions within each of these priority areas, with the goal of moving medical decision making research to a more comprehensive definition of a good medical decision, and enhancing the ability to measure and improve the decision making process

    FUN3D Manual: 12.6

    Get PDF
    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status

    FUN3D Manual: 12.5

    Get PDF
    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status

    FUN3D Manual: 13.3

    Get PDF
    This manual describes the installation and execution of FUN3D version 13.3, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status

    FUN3D Manual: 12.8

    Get PDF
    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status

    FUN3D Manual: 12.9

    Get PDF
    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status

    FUN3D Manual: 12.7

    Get PDF
    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status

    FUN3D Manual: 13.2

    Get PDF
    This manual describes the installation and execution of FUN3D version 13.2, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status
    • …
    corecore