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A B S T R A C T   

Populations of bears in Asia are vulnerable to extinction and effective monitoring is critical to 
measure and direct conservation efforts. Population abundance (local density) or growth (λ) are 
the most sensitive metrics to change. We discuss the value in implementing spatially explicit 
capture-recapture (SCR), the current gold standard for density estimation, and open population 
SCR (OPSCR) to monitor changes in density over time. We provide guidance for designing studies 
to provide estimates with sufficient power to detect changes. Because of the wide availability of 
camera traps and interest in their use, we consider six density estimation methods and their 
extensions developed for use with camera traps, with specific consideration of assumptions and 
applications for monitoring Asian bears. We conducted a power analysis to calculate the precision 
in estimates needed to detect changes in populations with reference to IUCN Red List criteria. We 
performed a systematic review of empirical studies implementing camera trap abundance esti
mation methods and considered sample sizes, effort, and model assumptions required to achieve 
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adequate precision for population monitoring. We found SCR and OPSCR, reliant on “marked” 
individuals, are currently the only methods with enough power to reliably detect even moderate 
to major (20–80%) declines. Camera trap methods with unmarked individuals rarely achieved 
precision sufficient to detect even large declines (80–90%), although with some exceptions (e.g., 
situations with moderate population densities, large number of sampling sites, or inclusion of 
ancillary local telemetry data. We describe additional estimation options including line transects, 
direct observations, monitoring age-specific survival and reproductive rates, and hybrid/inte
grated methodologies that may have potential to work for some Asian bear populations. We 
conclude monitoring changes in abundance or density is possible for most Asian bear populations 
but will require collaboration among researchers over broad spatial extents and extensive 
financial investment to overcome biological and logistical constraints. We strongly encourage 
practitioners to consider study design and sampling effort required to meet objectives by con
ducting simulations, power analyses, and assumption checks prior to implementing monitoring 
efforts, and reporting standardized dispersion measures such as coefficients of variation to allow 
for assessment of precision. Our guidance is relevant to other low-density and wide-ranging 
species.   

1. Introduction 

All four bear species endemic to Asia are considered vulnerable to extinction: sun (Helarctos malayanus), sloth (Melursus ursinus), 
and Asiatic black bears (Ursus thibetanus) due to suspected population declines, and giant pandas (Ailuropoda melanoleuca) because the 
estimated total population size is small (Garshelis et al., 2022 this series). Likewise, brown bear (Ursus arctos) populations in south Asia 
tend to be small and isolated, with most listed as Vulnerable, Endangered or Critically Endangered on the IUCN Red List (McLellan 
et al., 2017), even though this species is not globally threatened because it is faring well in North America, Europe, and northern Asia. 

Conservationists frequently must prioritize actions and rely on monitoring data to indicate when and where action is necessary or to 
evaluate the outcome of actions. For example, managers or conservationists may need to know if a population is in decline or 
recovering, identify areas that contain sustainable populations, or evaluate if protection of a specific area resulted in increases in the 
bear population. That is, there is a need to monitor population change. However, logistics, constraints on species-specific data 
collection, and analytical challenges often limit applications for effective, reliable, and replicable monitoring of Asian bears (Garshelis 
et al. 2022 and Proctor et al., 2022). Here we evaluate the use of density estimation as a monitoring tool in the context of Asian bears, 
but also more broadly for low-density species that can be camera-trapped or genetically sampled. 

1.1. Why is abundance or density the preferred parameter for monitoring population trends? 

Estimating how many individuals are in a population or area at a certain point in time (abundance, N) is one of the most effective 
ways to assess population status (Caughley, 1977; Williams et al., 2002). Temporal changes or spatial differences in abundance can 
indicate impacts to a population earlier than occurrence or change in range. Similarly, changes in abundance (population growth rate, 
λ) is the most sensitive population metric to evaluate if an existing population responds positively to conservation actions (Kéry and 
Royle, 2020). More coarse metrics such as changes in distribution require that portions of a populations range become locally 
extirpated before a change in status will be registered, whereas estimating population growth can show an increase or decrease in the 
number of bears before local extirpation. While occupancy has been successfully implemented to monitor population change of ter
ritorial species such as northern spotted owls (Strix occidentalis caurina, Yackulic et al., 2014), and sparsely distributed solitary species 
such as tigers (Panthera tigris, Karanth et al., 2011) or fishers (Pekania pennanti, Fuller et al., 2016), home ranges of Asian bears 
commonly overlap (Izumiyama and Shiraishi, 2004; Wong et al., 2004; Bellemain et al., 2007; Ratnayeke et al., 2007; Hwang, . et al., 
2010), particularly in situations with increased resource availability (Zhang et al., 2014). This means many bears may be lost before a 
spatial area becomes extirpated. Occupancy also requires a minimum number of sampling units at a spacing many times greater than 
the average size of a bear’s home range. As a result, small areas will not fit enough sampling units at the correct spacing (MacKenzie 
and Royle, 2005; Efford and Dawson, 2012; but see Fuller et al., this series). Thus, directly assessing changes in abundance may be the 
most effective way of evaluating if a bear population is stable or in peril with enough time to respond. 

Often, ecologists prefer to estimate density (D = N/area) rather than abundance to enable comparisons over time or in different 
places. If a population is geographically closed (the population is sufficiently isolated from other populations and there is no immi
gration and emigration occurring outside of the sampled area), it may be enough to estimate abundance at different points in time to 
assess population growth (e.g., brown bears in the Gobi Desert; Tumendemberel et al., 2021). But few populations are geographically 
isolated and abundance estimation and inference is limited to undefined effective sampling areas determined by movement of bears 
relative to the placement of sampling devices across the study area (the detector array or grid; Efford, 2004; Borchers and Efford, 2008; 
Royle and Young, 2008). In these circumstances, differences in movements within home range from one sampling period to the next, or 
in different areas, can change the abundance estimates even if there is no change in the actual population. By standardizing abundance 
estimates over units of space (such as bears per 100 km2), we can better compare differences in populations without bias. 
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1.2. Overview of density estimation methods for Asian bear populations 

While estimation of N or D is the preferred objective, it also requires intensive sampling and analytic methods. The main challenge 
in estimating density is that it is seldom possible to observe or census all individuals due to the cryptic nature of bears, as well as their 
low densities across large areas. Indices of abundance using counts of the number of photos of bears or tallies of their signs detected 
during standardized surveys can be biased by differences in activity, movements, and behavior (Sollmann et al., 2013b; Gopalaswamy 
et al., 2015). For example, differences in available food resources from one year to another may affect the number of trees climbed for 
food (and resulting bear claw marks observed) even if the population size is unchanged. Distribution of resources can also change home 
range size and habitat use, resulting in different encounter rates of bears at a camera trap grid, even if there is still the same number of 
bears. Thus, many methods for estimating density are based on capture-recapture and require the identification of individual bears to 
correct for biases resulting from differing detection probabilities (p). 

The challenge in applying capture–recapture approaches to Asian bears is identifying individual bears, which is a prerequisite to 
accurately estimate abundance or density with precision (Amstrup et al., 2005). Sun bears, sloth bears, and Asiatic black bears can be 
distinguished by patterns in their chest blazes, and some populations of brown bears have prominent markings that can aid in indi
vidual recognition (Nawaz et al., 2008). However, typically these marks are not easily or fully visible in camera-trap photos. To obtain 
sufficiently clear photos of these markings to distinguish individuals may require up to three camera traps per station and suspending a 
bait to make the bear stand up (Ngoprasert et al., 2012). Identifying individuals from fecal DNA has previously been problematic for 

Table 1 
Select methods for monitoring density, abundance, and population growth.  

Approach Acronym used in 
present review 

References Software and packages 
available 

Spatially explicit capture-recapture (also 
referred to as spatial capture-recapture) 

SCR We use a general term to refer to all approaches including 
integration over the full likelihood (Borchers and Efford, 
2008), maximum likelihood estimation (MLE) with data 
augmentation (Royle et al., 2014), and Bayesian estimation 
with data augmentation (Royle and Young, 2008) 
Bischof et al. (2020) and Turek et al. (2020) 

secr (R) 
oSCR (R) 
DENSITY 
SPACECAP (R) 
Implementations in 
JAGS and nimble 
nimbleSCR (R) 

Open population spatially explicit capture- 
recapture 

OPSCR Gardner et al. (2010) 
Ergon and Gardener (2014) 
Bischof et al. (2016) 
Chandler et al. (2018) 
Gardner et al. (2018) 
Efford and Schofield (2019) 
Bischof et al. (2020) 
Turek et al. (2021) 

secr (R) 
oSCR (R) 
Implementations in 
JAGS and nimble 
nimbleSCR (R) 

Royle-Nichols model R-N Royle and Nichols (2003) unmarked (R) 
N-mixture models  Royle (2004) MARK (gui) 

unmarked (R) 
Implementations in 
JAGS 

Unmarked spatially explicit capture-recapture 
(also referred to as spatial count or spatially 
correlated count models) 

USCR Chandler and Royle (2013) 
Royle et al. (2014) 
Ramsey et al. (2015) 

Implementations in 
JAGS and nimble 

Unmarked spatially explicit capture-recapture 
models with informed priors or some 
proportion of the population marked 

USCR+ Burgar et al. (2018) 
Johnson (2019) 

Implementations in 
JAGS and nimble 

Spatial mark–resight SMR (USCR+) Sollmann et al. (2013a)Whittington et al. (2018); Efford and 
Hunter (2018) 

Implementations in 
JAGS and nimblescr 

Generalized spatial mark–resight Gen-SMR 
(USCR+) 

Whittington et al. (2019) 
Jimenez et al. (2019) 

Implementations in 
JAGS and nimble 

Random thinning spatial mark–resight RT-SMR Jiménez et al. (2021) Implementation in 
nimble 

Random encounter model REM Rowcliffe et al. (2008) 
Caravaggi (2017) 

remBoot (R) 

Random encounter and staying time model REST Nakashima et al. (2018)  
Time-to-event model TTE Moeller et al. (2018) spaceNtime (R) 
Space-to-event model STE Moeller et al. (2018) spaceNtime (R) 
Instantaneous sampling IS Moeller et al. (2018) spaceNtime (R) 
Camera trap DISTANCE sampling CTDS Howe et al. (2017) DISTANCE (gui) 

distance (R) 
Dsim (R) 

Line transect DISTANCE sampling LTDS Buckland et al. (2001) 
Thomas et al. (2010) 
Buckland et al. (2015) 

DISTANCE (gui) 
distance (R) 
Dsim (R) 

Estimating trend based on age-specific survival 
and reproductive rates  

Eberhard, 1994   
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Asian bears due to generally low individual identification success rates (Dutta et al., 2015) and the difficulty of finding bear feces in 
tropical environments where decomposition rates are high (Wong et al., 2002; Steinmetz et al., 2013; but see Fredriksson et al., 2006 
and Zhan et al., 2006 for exceptions). Genetic capture-recapture methods have been applied to brown bears throughout Europe, and 
brown bears and American black bears (Ursus americanus) in North America using DNA gathered from hair-snare traps (initially 
developed for bears) and rub trees (Woods et al., 1999; Kendall et al., 2019). Researchers have been able to obtain hair samples from 
Asiatic black bears (Vaeokhaw et al., 2020), sun bears (Tee et al., 2020), and sloth bears (Sharma et al., 2013; Dutta et al., 2015) for 
pilot studies and population genetics analyses. But detection rates and required effort for hair trapping have rarely been explored for 
Asian bear populations (but see Tumendemberel et al., 2015 and Burton et al., 2018). 

A recent proliferation of “unmarked” methods attempt to mitigate the logistical and financial challenges of identifying individuals 
when estimating density. These models do not require individuals to have unique marks but instead make more restrictive assumptions 
or require ancillary data about individual movement to parse activity and detection biases from abundance (Gilbert et al., 2021). 
Several of these methods may have applications to Asian bears but scrutiny of the assumptions relative to each species and envi
ronmental context is necessary and further validation including potential for biases and assessment of power to detect population 
change is needed before attempting to apply for monitoring objectives (Amburgey et al., 2021). 

The objectives of this article are to assess approaches and identify limitations and future directions to improve density estimation 
for Asian bears (Table 1). Four of the five criteria the IUCN uses to assess Red List status are contingent on estimates of population size 
or realized, inferred, or projected population decline (IUCN, 2012). Therefore, it is imperative to consider how study design and 
analytical method may affect precision and ability to detect a decline over time. In view of this, we used power calculations to establish 
standards for precision of population estimates to detect population changes or differences among study areas (Efford and Boulanger, 
2019). We conducted a literature review of existing empirical studies (of any species) using camera traps to estimate abundance or 
density to assess how well different methods achieve required levels of precision. We discuss design considerations of approaches to 
improve precision and identify possible applications and limitations of each method for scenarios specific to monitoring Asian bears. 

2. Potential analytical methods for estimating abundance and density for Asian bears 

2.1. Mark–recapture and spatially explicit capture-recapture with individual identification (marks) 

Failure to account for heterogeneity (differences) in the probability of detection, p, across space and time can bias estimates. 
Estimating p commonly involves an initial marking of a sample (M). Historically marking of bears was accomplished using physical 
tags, but now is often done using existing “marks” distinguishable on photographs or genotypes obtained from hair or scat. The 
population is later resampled (with n2 bears detected of which m2 were identified as being previously detected) and p estimated from 
the proportion of previously detected bears in the second session (m2/n2). Dividing the number of marked bears known to be in the 
population by their proportion in the population yields an estimate of population size. The challenge with applying this type of 
estimator is that it assumes detection probabilities are similar for all bears within a sampling occasion. Data collected to track changes 
in populations typically begin as counts of detections, but rarely are all individuals detected. In reality, p can also vary by individual 
and through time in response to capture, seasonal effects, and susceptibility to being sampled. One approach is to confront variation in 
p with stringent assumptions (e.g., no changes in population size; no births, deaths, immigration, and emigration) between sampling 
occasions (the most notable being closed models; Otis et al., 1978; White et al., 1982). Another problem is that bears tend to be 
wide-ranging, and in continuous habitats the animals along the edges of the sampled area live partly in and partly out of the geographic 

Fig. 1. Spatially explicit capture–recapture. The animal population is viewed as a scatter of individual activity centers in 2 dimensions (left, blue 
circle; parameter D density). The probability of detection at a fixed detector (red cross) is related to the distance between the activity center and 
detector (right; parameters λ0 intercept and σ spatial scale). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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area of interest. This creates an ill-defined estimate of population size and can inflate the estimate of density derived by dividing 
abundance by area, since the real area that the animals use is larger than the sampled area (Wilson and Anderson, 1985; Boulanger and 
McLellan, 2001). 

SCR models address many of the above issues by utilizing spatial information obtained by recaptures (repeated detections) of bears 
at different traps on sampling grids to estimate the probability of detection at various distances from the individual’s estimated activity 
center. This can be conceptualized as 1) an overall estimate of detection probability (g0), or encounter rate (λ0), at the location of the 
activity center and 2) an estimate of the rate of decline in detection probability with increasing distance (σ) between the detector and 
the activity center. A statistical model is fitted to the observations to remove potential bias when some individuals escape detection, 
and the population lacks a natural boundary. The statistical model includes submodels for the spatial distribution of animals (strictly, a 
spatial point process for their activity centers) and for the probability of detecting an animal at a point, given the distance from that 
point to its activity center (Fig. 1). 

SCR models estimate the home range center of each bear detected on the sampling grid based on the configuration of detectors (e.g., 
physical traps, hair traps, camera traps) relative to where the bear was detected and its estimated movements. The location of esti
mated home range centers, and thus density, can then be related to habitat and anthropogenic covariates (Royle et al., 2013; Efford, 
2014a). There are several modeling approaches to SCR (Table 1) using both MLE with full integration over the sampling area, MLE 
with conditional likelihood (n|N; Borchers and Efford, 2008; Sutherland et al., 2019) and Bayesian estimation with data augmentation 
(Royle et al., 2013). The availability of software and R packages have allowed for the rapid adoption of SCR methods to bear popu
lation size estimation. 

A challenge in the application of SCR methods is how to efficiently sample areas to allow the most individuals to be detected while 
also ensuring enough spatial recaptures to estimate the detection kernel (this requires multiple detectors within an individual home 
range). SCR methods have the advantage that trap layout is modeled and therefore the conventional CR assumption that all bears in the 
area have a non-zero detection probability can be relaxed. However, it is still important that the traps sample the target area of interest 
in a representative fashion. For example, if sampling occurs only in areas where detection is expected to be high, then derived density 
estimates would pertain to these areas and should not be extrapolated to entire area with different habitats that might support different 
bear densities. Systematic sampling using grid cells (where a detector is placed in one grid cell) or sub-grids/cluster sampling (Humm 
and Clark 2017; Clark, 2019) can increase spatial extent and number of individuals available for detection and provide representative 
sampling of the landscape. Several recent papers provide guidelines for sampling designs using SCR (Sun et al., 2014; Clark, 2019; 
Efford and Boulanger, 2019; P. Dupont et al., 2021; G. Dupont et al., 2021; Durbach et al., 2021). 

An underlying question in study design is the optimal trap spacing and number of traps required to obtain accurate and precise 
estimates. If we assume that methods applied in empirical studies produce unbiased estimates of density, the coefficient of variation 

Fig. 2. Illustration of the use of empirical data and simulations for assessing the relationship between camera trap spacing, the estimated number of 
individuals detected, total recaptures, for a fixed 6 × 6 grid where trap spacing (and overall grid size) is varied. Also shown on the 2nd axis is the 
associated precision (RSE; here equivalent to % CV). The data for this graph are for sun bear camera trap data with detection at home range center 
(g0) = 0.19 and spatial scale (σ) = 2.27 km (Ngoprasert et al., 2012) sampled for five sessions in a 6 × 6 rectangular grid with an assumed density of 
5 bears per 100 km2. 
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(CV; a measure of precision where lower values indicate greater precision) serves as a useful metric to assess the efficacy of density 
estimation methods. A recent review of empirical studies using camera traps for SCR found the CV of density estimates averaged 0.31, 
with only 21% of studies reporting a CV < 0.20 (Green et al., 2020), a commonly accepted benchmark for precision to be considered 
useful for wildlife management (Pollock et al., 1990; Williams et al., 2002). However, several SCR studies on North American bears 
(using hair traps instead of cameras) have shown greater precision, in part because resources allowed for extensive sampling of large 
spatial extents (including cluster designs) over which studies were conducted, exposing a greater sample of bears to capture (More
house and Boyce, 2016; Humm and Clark 2017; Boulanger et al., 2018; Kendall et al., 2019; Stetz et al., 2019) compared to the studies 
reviewed by Green et al. (2020). Precision of SCR estimates is also affected by local density of the bears and sampling effort. For 
example, a cluster design study employed to estimate bear densities across Florida, USA, showed variable precision for study areas with 
two levels of density and different numbers of hair traps (Humm and Clark 2017). Precision was similar for an area with higher bear 
density (0.13 bears/100 km2) with 190 traps (CV = 0.13) compared to an area with lower bear density (0.08 bears/100 km2) with 324 
traps (CV = 0.13), but precision was lower (CV = 0.24) for an area of approximately the same high density (0.13 bears/100 km2) when 
only 83 traps were sampled (Humm and Clark 2017). Apart from sampling effort, these variations in precision are also influenced by 
detection probabilities, which are often difficult to pre-determine. However, it appears that study areas with higher densities will 
require less intensive sampling, although there is nonetheless a threshold of minimum effort below which precision will suffer, even at 
higher densities. 

Optimal placement of traps can be approximated by a design where the number of individuals (n) sampled equals the number of 
total recaptures (r) with precision of estimates, as indicated by relative standard error (RSE=SE(D̂)/D̂), being approximated by 

1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

min⁡(E(n),E(r)
√

. Basically, this means that the overall precision of estimates will be determined by either the number of bears 
detected, or the total number of recapture events, whichever is smallest. Mark–recapture studies strive to obtain estimates with an RSE 
(similar here to CV) of 0.20 or less (Pollock et al., 1990; Williams et al., 2002). Using estimates of g0 and σ it is possible to approximate 
the number of detections and redetections as a function of different trap layouts and from this, assess optimal trap spacing for sampling 
detectors (Efford and Boulanger, 2019). For example, using sun bear camera trapping data from Ngoprasert et al. (2012), we estimated 
the number of bears detected, and the number of recaptures, with a uniform sampling grid of 36 camera traps and an assumed density 
of 5 bears/100 km2 sampled for five occasions. For these simulations it was assumed that the number of camera traps was fixed and 
therefore changing trap spacing changed the overall size of the sampling grid and the resulting number of bears subject to detection. In 
this case the optimal trap spacing is 3.7 km (Fig. 2); closer than this, too few bears are detected with 36 camera traps because only a 
small area is covered, and with wider spacing the recapture rate of individual bears becomes too small because successive cameras are 
out of range of individual bears, given bears’ average movements around their home ranges. Bear density in this case does not in
fluence optimal spacing but does influence the estimated level of precision. These results are similar to the findings of Ngoprasert et al. 
(2012), who used a 1.5–2 km trap spacing, but learned subsequently from simulations that a 4-km spacing (and hence larger study 
area) would have improved the precision of their density estimates. They concluded, after conducting a significant field effort in two 
study areas, that due to the low precision of their estimates, their estimates “have limited value for monitoring purposes,” and they 
recommended using simulations to improve future study designs (Ngoprasert et al., 2012). The best design in this case increased 
spacing to 3.7 km so that the number of bears detected roughly equaled the number of recapture events. 

The approximation method is available in the secrdesign package (Efford, 2015) and its associated web-based Shiny app (https:// 
www.stats.otago.ac.nz/secrdesignapp/). This method allows efficient testing of various sampling configurations under a variety of 
assumed detection and density scenarios which can be cross-validated using simulations. Simulation studies are critical in assessing 
designs and easily implemented using secrdesign or writing functions to employ in oSCR R package (an alternative SCR package 
employing MLE; Sutherland et al., 2019). Simulations are more difficult for Bayesian implementation of SCR as there is often extensive 
computation time required for each iteration of each design scenario. However, this does not mean that simulation should not be 
attempted if planning to use a Bayesian SCR model. When likelihoods are compatible, or if only the basic SCR parameters are being 
assessed (N/D, g0 and σ), survey designs can be evaluated using MLE approaches (e.g., oSCR) but real data may still be analyzed using 
Bayesian SCR models. Hence, MLE approximations and simulations could still be used to calculate other metrics associated with 
different study designs that indicate desired precision (i.e., number of individuals detected, number of spatial recaptures, distance 
moved between recaptures) without requiring running each model with simulated data to convergence. 

2.1.1. Open population spatially explicit capture-recapture 
Conservationists are often more interested in determining the direction and rate of population change (hereafter trend) than simply 

population size. Population trends can be derived by comparing SCR density estimates over time (Kendall et al., 2019), although this 
requires high precision for each estimate to detect differences and extensive computational resources. Open, non-spatial capture-r
ecapture (CR) population models (which allow births, deaths, immigration, and emigration) have been used to estimate trends in bear 
demography and relate these changes to environmental factors (Boulanger et al., 2004; Housty et al., 2014; Stetz et al., 2019). Like 
non-spatial CR models, SCR models can be expanded to populations that are demographically open (Ergon and Gardner, 2014; Bischof 
et al., 2016; Chandler et al., 2018). In addition to submodels for the observation process and the point process for activity center 
distribution, open population spatial capture-recapture (OPSCR) models include, at a minimum, submodels for recruitment, mortality, 
and between season movement. OPSCR can thus produce estimates of vital rates, movement/dispersal distances, as well as time series 
of density and abundance. Thus, instead of stringing together static snapshots of populations with non-spatial SCR models, OPSCR 
models allow the combined estimation of spatial population dynamics and can therefore be used to make population forecasts and 
project outcomes of different scenarios (Bischof et al., 2020). By modeling dynamics explicitly, OPSCR models also make better use of 
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the available information than single-season SCR models, as detections of individuals across multiple years inform individual states in 
the absence of observations (Bischof et al., 2020). Furthermore, OPSCR models also allow integration of dead recovery data (in
dividuals known to have died), potentially improving precision of parameter estimates further (G. Dupont et al., 2021; P. Dupont et al., 
2021). 

OPSCR models require multiple seasons of data (usually multiple years for large carnivores such as bears) and the longer-term 
perspective on monitoring brings higher resource demands. This can, to some extent, be mitigated by aforementioned propagation 
of information between years: as population dynamics are modeled explicitly, study design may accommodate gaps in monitoring, 
especially for long-lived species, like bears, that may be recaptured over multiple years and whose dynamics are less volatile (Milleret 
et al., 2020). Drawbacks of OPSCR models are their current lack of utilities for performing goodness-of-fit testing and greater 
complexity compared with traditional SCR models. Established methods and software (both maximum likelihood and Bayesian) are 
available for SCR models and have grown in use and functionality since these models were first described (Efford, 2004), whereas 
OPSCR is still less accessible to investigators. However, here too, tools are emerging, including software for fitting of models using 
maximum likelihood (Efford and Schofield, 2019; Glennie et al., 2019) and utilities for building and fitting Bayesian OPSCR models 
(Augustine, 2018; Augustine et al., 2020). Since conventional open capture-recapture models have been developed extensively, it is 
also useful to combine closed SCR estimates with conventional open CR models which are already well established in the conservation 
community (see Duangchantrasiri et al., 2016 for an application with tigers). Finally, application of OPSCR models to large scale 
analyses – including those that may involve transboundary bear populations in Asia – face a substantial computation challenge due to 
the potentially huge number of calculations involved at large scales. High-performance computing and parallelization can mitigate this 
challenge, as can recent developments in SCR and ecological computation in general, such as features that significantly reduce the 
number and increase the speed of calculations (Turek et al., 2020). With the help of such functionality, a large-scale (>500 000 km2) 
Bayesian OPSCR analysis was recently performed on a trans-boundary brown bear population in Scandinavia, using 7 years of 
non-invasive genetic sampling data and involving ~13 000 samples from ~3000 individuals (Bischof et al., 2020). 

2.2. Evaluation of methods to estimate density using camera traps when individual bears cannot be identified (no marks) 

A large number of conservation studies in Asia now rely on camera trapping, and for some taxa, especially felids, individuals are 
identifiable by their natural markings, enabling monitoring with the methods described above. However, the natural markings of most 
Asian bears are on their chest, so unless a lure is used to prompt them to stand up in front of a camera (Ngoprasert et al., 2012), they 
would not be individually distinguishable on camera trap photos. Overcoming this obstacle with analytical methods for estimating 
abundance of unmarked animals could allow for a leap forward in bear monitoring. A recent review (Gilbert et al., 2021) identified and 
described six analytical frameworks for estimating abundance or density of unmarked animals with camera traps: 1) site-structured 
models including Royle-Nichols (R-N; Royle and Nichols, 2003) and N-mixture (Royle, 2004) models, 2) unmarked SCR [USCR, 
also referred to as spatial counts (SC); Chandler and Royle (2013)], 3) random encounter models (REM; Rowcliffe et al., 2008), 4) 
time-to-event models (TTE; Moeller et al., 2018), 5) space-to-event (STE) and the instantaneous sampling model (IS; Moeller et al., 
2018) extension, and 6) camera trap distance sampling (CTDS; Howe et al., 2017). 

The most evident issue with applying several of these methods to Asian bear populations is the large amount of spatio-temporal 
heterogeneity in home range overlap that commonly occurs among individuals within bear populations (Izumiyama and Shiraishi, 
2004; Wong et al., 2004; Ratnayeke et al., 2007, 2014). Unmarked methods attempt to disentangle repeated detections of the same 
individual from detections of different individuals at the same location using assumptions about independence among camera traps, 
home range size and degree of movement, or relying heavily on assumptions about camera placement, detection windows, and animal 
active periods and speed of movement (Gilbert et al., 2021). Small violations of these assumptions (detailed extensively in Gilbert 
et al., 2021) can result in strong biases and reduced precision, rendering the resulting estimates useless at best, and misleading at worst 

Fig. 3. Precision of estimates as measured by coefficient of variation (CV; y-axis) from a selection of empirical studies found during systematic 
review of unmarked methods (colored horizontal lines; site-structured = Royle-Nichols [R-N] or N-mixture, USCR = unmarked spatial capture- 
recapture, USCR+ = USCR with ancillary data such as telemetry included or with a proportion of the population marked including random 
thinning spatial mark–resight [RT-SMR] and generalized spatial mark–resight [Gen-SMR], REM = random encounter model, REST = random 
encounter and staying time, TTE = time-to-event, STE = space-to-event, CTDS = camera trap distance sampling) that reported CV or mean and 
dispersion to calculate CV (SD or SE; horizontal lines). Only studies that achieved CV ≤ 0.69 (power to detect 99% decline) are included. The dark 
gray polygon represents the precision needed to detect a difference in populations (x-axis) with 80% power and α < 0.05, according to IUCN Red 
List Criteria A (vertical lines; see Table 2). The light gray polygon represents the precision needed to detect a difference in populations (x-axis) with 
80% power and more liberal α < 0.20 expected to balance Type I and Type II error rates. Increased precision resulted from specific study designs 
(greater numbers of camera stations often resulted in greater precision) and population densities (higher densities tended to result in greater 
precision). Thus, while the REM model using 120 camera trap stations over 6 nights (and movement data from nearly 1000 camera trap stations) to 
estimate hedgehog density had sufficient precision (CV = 0.09) to detect a 40% population decline in one study, the same approach may not achieve 
the same precision depending on sampling design, effort, assumptions violated or met, or amount of data In comparison the average CV = 0.31 for 
REM estimates of abundant red deer and wild boar with 67 camera trap stations surveyed for 11 months, and 5 of 8 sites in the hedgehog study did 
not produce CV< 0.20. Further illustrating the interplay of study design and site context including population density and behavior, the R-N method 
achieved greatest precision reported for one species of forest duikers at a particular study site (CV = 0.08), but averaged CV = 0.36 across all study 
sites using the same standardized methodology (camera trap stations and duration; O’Brien et al., 2020). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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(Cusack et al., 2015; Gilbert et al., 2021; Loonam et al., 2021). Further, like SCR, USCR methods estimate density for a defined area 
explicitly. The remaining methods estimate abundance for the camera locations without reference to space (R-N and N-mixture) or for 
the collective viewsheds of the cameras and assume the camera trap locations sampled adequately represent the entirety of the area 
which may result in different study design considerations. Thus, unmarked density estimation methods should not be selected based on 
the structure of data already collected, but instead should be chosen before initiation of a study with consideration of how well a target 
population may adhere to assumptions and the potential to achieve a specific objective. A drawback of unmarked methods for 
monitoring is that open population models are not possible if individuals cannot be tracked through time because survival and 
recruitment are not separately identifiable. Population growth can only be estimated with unmarked methods by comparing multiple 
estimates over time, and detection of trend relies on the precision of estimates at each sampling period. 

We do not repeat the extensive overview and comparison of methods from Gilbert et al. (2021) here, but instead consider each 
approach for the conservation and monitoring of Asian bears. We extended the previous review of unmarked camera trapping 
methods, adding new studies published from 2019 to July 22, 2021, found by searching Google Scholar [search terms: (method type) 
camera trap density, or (method type) camera trap abundance]. We extracted density and abundance estimates, dispersion measures, 
number of camera trap stations, and length of surveys, to draw out possible circumstances and study design considerations that may 
provide guidance on the use of camera traps for estimating density of unmarked Asian bears. 

We employed two-tailed power analysis (Appendix S3 of Efford and Boulanger, 2019) to calculate the CV of estimates required to 
detect differences in populations from − 1% to − 99% with standard thresholds of 80% power and α < 0.05 to adhere to standards for 
inferring statistical significance, and a less conservative α < 0.20 to balance Type I and II error rates (Fig. 3). Based on the power 
analysis with α < 0.05, required CVs ranged from 0.07 to detect a − 30% difference, 0.26 to detect a − 80% difference, and 0.33 to 
detect a − 90% difference. Estimates with CVs ≥ 0.40 and ≥ 0.69 could not detect a difference of − 95% or − 99%, respectively. We 
compared reported CVs and derived CVs when means and standard error or standard deviation was reported for each study (SE/μ or 
SD/μ) and included in Fig. 3. 

We assessed precision of empirical density and abundance estimates as useful or practicable if they could be expected to detect 
≤ 30–90% population decline, based on the power to detect population declines that would result in a different IUCN Red List status 
(Table 2; IUCN, 2012), and we considered methods that produced CV ≤ 0.20, the threshold previously established for wildlife 
management (Pollock et al., 1990; Williams et al., 2002) as advantageous. Many studies only reported 95% Confidence or Credible 
Intervals (95%CI). Due to the asymmetrical nature of abundance estimates we did not attempt to derive CVs from these estimates, but 
instead calculated the ratio of the 95%CI range to the mean estimate to quantify precision (CI width). By comparing the CI width with 
the CV when both were reported, we found CI width ≤ 1 frequently corresponded with CVs with 80% power to detect − 80% difference 
when α < 0.05, and ≤ 1.5 with CVs with 80% power to detect a − 99% difference. The review and assessments below are not 
comprehensive but highlight potential uses and issues. Practitioners interested in applying any of these methods should consult the 
studies referenced for more information on assumptions and limitations of methods, particularly as it pertains to accuracy and bias (not 
addressed here, but see Gilbert et al., 2021 for an extensive review). 

The greatest hindrance to the use of camera traps to estimate density using unmarked estimation methods is the reduced precision 
typical of estimates from most empirical studies (Cappelle et al., 2021; Palencia et al., 2021) compared to accepted standards for 
wildlife management (CV ≤0.20; Williams et al., 2002) and those achieved by empirical SCR studies (Morehouse and Boyce, 2016; 
Humm and Clark 2017; Table 3). Uncertainty around estimates may propagate through inadequate power due to limitations on 
number of camera traps that can be afforded (logistically and financially), or model misspecification. Number of detections is also 
influenced by movement patterns, population density, size of study area (influencing number of possible camera trap stations), type of 
habitat (affecting detection range of camera), type of camera, camera setup, and duration of surveys (Table 3). In each case, it will be 
important to consider the degree to which the observation process is expected to adhere to model assumptions, thereby affecting bias. 
The variability of success (in achieving the precision threshold) across sample sizes, densities and duration shown in Fig. 3 and Table 3 
demonstrate there are no hard and fast rules or minimum metrics that will ensure sufficient precision, likely due to circumstances that 
cannot currently be accounted for. However, in general CV improved with higher density, more camera traps, and longer surveys. 
Below, we discuss the assumptions and limitations of existing unmarked methods applied to camera trap data, to demonstrate how 
these methods can be evaluated by practitioners prior to selection and implementation. 

Table 2 
Coefficient of variation (CV) needed to detect population changes corresponding to IUCN Red List Criteria A (IUCN, 2012), calculated using a 
two-tailed power analysis (Efford and Boulanger, 2019) with standard thresholds of 80% power and α < 0.05%, and 80% power and a more liberal 
α < 0.20 expected to balance Type I and Type II error rates. Presently three Asian bears are classified as VU based on criteria A.  

Red List Criteria Red List Category % decline CV required 
(α < 0.05) 

CV required 
(α < 0.20) 

A2, A3, A4 VU ≥ 30%  0.07  0.10 
A1 VU ≥ 50%  0.14  0.19 
A2, A3, A4 EN ≥ 50%  0.14  0.19 
A1 EN ≥ 70%  0.21  0.30 
A2, A3, A4 CR ≥ 80%  0.26  0.39 
A1 CR ≥ 90%  0.33  0.58 

VU = Vulnerable; EN = Endangered; CR = Critically endangered. 
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2.2.1. Site-structured models 
Site-structured models including Royle-Nichols (R-N) model, based on binary detection/non-detection data (Royle and Nichols, 

2003), and N-mixture models, which use count data (Royle, 2004), extrapolate density or abundance over large areas based on counts 
corrected to account for imperfect detection at independent camera sites. These models require independent detections among camera 
trap sites (i.e., the same bear is not detected at multiple camera traps) so spacing of camera traps must be large for bears (>2x home 
range size radius) to avoid multiple spatial detections and ensure there is no overlap in effective sampling areas (the total area being 
sampled by a camera). This contrasts with SCR methods, where recaptures of the same individual at multiple traps is required. Es
timates from N-mixture models will also be biased if multiple individuals are detected multiple times at the same camera trap, but 
cannot be differentiated, and so should only be used for solitary and territorial species. 

Abundance estimates from empirical studies using site-structured models were generally imprecise and derived CVs were 0.65 
(Kalle et al., 2014; R-N averaged across species, CV range = 0.30–1.00), 0.66 (Ribeiro et al., 2019; N-mixture) and 0.70 (Brodie et al., 
2015a; R-N, averaged across species, CV range = 0.11–1.26). Several studies using site-structured models did not emphasize or report 
abundance or density estimates explicitly, instead using the models to better understand spatial covariates that influence density or 

Table 3 
Effort and duration required for a selection of studies that resulted in density or abundance estimates with a coefficient of variation (CV) ≤ 0.20. All 
studies highlighted also produced at least one estimate that did not meet the precision threshold, with the exception of Whittington et al. (2018) 
(unmarked spatial capture-recapture generalized spatial marked-resight model) and Moeller et al. (2018) (only one estimate reported for each 
model). Lack of precision in empirical estimates from these studies and others are detailed in the text.  

Study Species (country) Model Duration Number of trap 
locations 

Density or 
abundance (CV) 

Note 

Humm and Clark 
(2017) 

American black 
bears (USA) 

SCRa cluster design 6 1-week 
occasions 

190 
324 
134 

12.7/100 km2 

(0.13) 
8.2/100 km2 

(0.13) 
13.2/100 km2 

(0.17) 

Ocala-St John’s 
Apalachicola 
Big Cypress 

Morehouse and 
Boyce (2016) 

Brown bears 
(Canada) 

SCR multistrata 
(2013 estimates) 

7 3-week 
occasions 

902 1.5/100 km2 

(0.17) 
1.4/100 km2 

(0.20) 
0.9/100 km2 

(0.15) 
0.8/100 km2 

(0.20) 

Females Recovery zone 
Females Support zone 
Males Recovery zone 
Males Support zone 

O’Brien et al. (2020) 
Ogilby’s duiker 
Blue duiker 
(Cameroon) 
Bay duiker 
Yellow-backed 
duiker 
(Republic of 
Congo) 
Harvey’s duiker 
(Tanzania) 
Black-fronted 
duiker 
(Rwanda) 

R-Nb 6 5-day 
occasions 

60 N= 1.13 (0.08) 
N= 2.12 (2.12) 
N= 1.97 (0.16) 
N= 3.01 (0.15) 
N= 2.18 (0.15) 
N= 0.94 (0.14) 

Korup National Park 
(NP) 
Nouabale-Ndoki NP 
Udzungwa NP 
Virunga NP 

Schaus et al. (2020) 
Hedgehogs 
(England) 

REMc 6 nights 120 
112 
119 

680/100 km2 

2590/100 km2 

1750/100 km2 

Hartpury 
Southwell 
Ipswich East 

Moeller et al. (2018) 
Elk (USA) TTEd 29 nights 80 N̂ = 2217 (0.10)  

Moeller et al. (2018) 
Elk (USA) STEe 29 nights 80 N̂ = 1718 (0.13)  

Whittington et al. 
(2018) 

Brown bears 
(Canada) 

USCR+f (Gen-SMRg) 16 2-week 
occasions 

214 1.2/100 km2 

(0.12) 
averaged over annual 
sessions years 

Bessone et al. (2020) Congo peafowl CTDSh mean = 38.5 
nights 

750 91/100 km2 

(0.17)   

a spatial capture-recapture. 
b Royle-Nichols. 
c random encounter model. 
d time-to-event model. 
e space-to-event model. 
f unmarked SCR with additional data. 
g generalized spatial mark–resight. 
h camera trap distance sampling. 
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abundance (Brodie et al., 2015b; Duquette et al., 2014; Xiao et al., 2018). Even those studies that did report specific density or 
abundance estimates focused more on relationships among spatial covariates as drivers of abundance. These studies typically relied on 
model selection using information criteria, highlighting the usefulness of site-structured models in identifying covariates that affect 
detection (e.g., vegetation heterogeneity; Duquette et al., 2014) and abundance (e.g., human activity; Xiao et al., 2018). 

Precision of estimates is dependent on the number of camera trap sites; low-density populations require a greater number of trap 
sites to compensate for low detection rates (Duarte et al., 2018). For example, Schlichting et al. (2020) evaluated the use of N-mixture 
models to monitor changes in wild pig (Sus scrofa) populations following animal removal and produced more precise estimates of 
abundance with 42 cameras in a high-density population (CI width = 0.27–0.28) than with 55 cameras in a lower density population 
(CI width = 0.36–0.38). A study using R-N to estimate point abundance for nine forest duiker species (Bovidae, Cephalophinae) in six 
national parks in central and east Africa showed some exceptions to the trend of imprecision (O’Brien et al., 2020; CV averaged across 
species = 0.36, CV range = 0.08 – 1.33). Five of six sites in this study collected data following a standardized protocol including 60 
cameras (TEAM Network, 2011). The least precise estimate (CV = 1.33) was for the least abundant population (estimated 0.09 duikers 
at each site) and six of 15 estimates derived CVs < 0.20, with the 60 traps, but there was no direct relationship between abundance and 
precision, suggesting other sources of variation in the amount of information obtained per site (e.g., variation in detection probability 
due to differences in space use behavior) also affect precision. 

Knowing that spatial variability in the detection of bears can be high, multiple camera traps within a general area, together 
comprising a single sampling location should likely improve detection and the robustness of abundance estimates (Kolowski et al., 
2021). Equally, an expansive spatial extent will likely be needed for low density Asian bear populations to achieve adequate sample 
sizes to fit models that produce abundance estimates with acceptable precision for most conservation objectives. While restrictive for 
use in single small areas, like a particular reserve, the R-N model might work well for monitoring on the scale of states, countries or 
regions if the study design adheres to model assumptions (Gilbert et al., 2021). For example, Linden et al. (2017) sampled fishers, a low 
density, solitary mesocarnivore, across a large extent of New York State (USA) with CI width = 0.43. Site-structured models could also 
be used in 2-stage adaptive monitoring framework (Conroy et al., 2008), indicating where more intensive monitoring may yield the 
greatest information. 

For populations and species with expansive ranges (e.g., brown bear, Asiatic black bear), only site-structured models may be 
logistically feasible to implement considering the number of camera traps required at a spatial scale necessary to detect 30–90% range- 
wide declines in abundance necessary to trigger changes in IUCN Red List status (IUCN, 2012). However, both R-N and N-mixture 
models are sensitive to assumption violations and estimates should be critically assessed (Gilbert et al., 2021). R-N model estimates 
only retain a relationship to abundance when the species is relatively rare and should not be used in moderate or high-density pop
ulations or populations with high amounts of individual home range overlap (Gopalaswamy et al., 2012). In addition, effective 
sampling area for both site-structured models is assumed ad hoc, and not estimated explicitly, so if the objective was to compare 
population estimates for units within a larger contiguous population, inference will be confounded if the true effective sampling area 
changes over time between estimates (a possible outcome when individual home range movements change among sampling periods). 
Extrapolation to an effective sampling area will be further exacerbated when undescribed sources of heterogeneity in density that 
cannot often be described by available spatial covariates (such as poaching) are present (Duarte et al., 2018; but see Moore et al., 2021 
for an example where this is included). 

Estimates from N-mixture models can be biased when assumptions are violated and, under these circumstances, have been sug
gested to be relative abundance indices (Barker et al., 2018; Link et al., 2018). If the bias is consistent, then estimates from one time 
period to the next may still adequately reflect magnitudes of decline accurate enough for Red Listing (Table 2). Repeated counts over 
time could be combined with other data sources in integrated population models allowing for estimation of population trend with 
other sources of data (Schaub et al., 2007). However, estimates from N-mixture models should not be used for objectives that require 
absolute estimates of abundance unless adherence to closure assumptions can be verified (Royle, 2004). 

2.2.2. Unmarked Spatial Capture–Recapture (USCR) 
Unmarked SCR (USCR) has appeal as an ecological model representing the distribution of individuals over an estimated effective 

sampling area (area is estimated, not defined ad hoc, so density estimates across study sites and over time are comparable). The model 
accounts for imperfect detection of individuals (based on where a camera trap is located in relation to an animal’s activity center; 
Chandler and Royle, 2013; Royle et al., 2013) by estimating baseline detection probability (λ0) and the scaling parameter (σ) akin to 
SCR, but based on spatially correlated counts of detections at detectors. Unfortunately, there is only a narrow range of circumstances 
when USCR would be expected to produce adequately precise and unbiased estimates under sampling designs typically deployed 
(without additional information estimated from ancillary data, see below). Augustine et al. (2019) framed the problem using the 
Identity Diversity Index (IDI), quantifying how uncertainty surrounding USCR estimates increases in magnitude as the number of 
individuals that can possibly be detected at a camera trap increases (the more overlap among individual home ranges, the greater the 
uncertainty and the poorer the precision in the estimates). The IDI shows how uncertainty renders comparisons between estimates 
impractical even at low densities as home range size and overlap increases (Augustine et al., 2019). 

Poor precision in USCR estimates limits the usefulness of this method for nearly all identified conservation needs without strong a 
priori knowledge on home range movements or ancillary data such as telemetry or a proportion of the population with identifiable 
marks (Augustine et al., 2019). One empirical study implementing USCR with American black bears appears an outlier to this trend of 
imprecision (Evans and Rittenhouse, 2018) and raises some skepticism (Gilbert et al., 2021). The study used Markov chain Monte Carlo 
(MCMC) code customized in R and we were unable to replicate the high degree of precision using the data provided in the repository 
and widely available MCMC samplers (JAGS, and the sampler function in the SCR book package). As a result, we did not include the 
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estimates from the study in our review. 
Ultimately, USCR estimates are unlikely to detect differences in Asian bear population densities over time or among areas without 

ancillary data (e.g., telemetry data; Johnson, 2019) or a proportion of the population being individually identifiable (Augustine et al., 
2019). We refer to USCR with ancillary data as USCR+ to distinguish it from uninformed USCR. Additional data are most effective 
when they inform both λ0 and the scaling parameter σ, and when variability in individual movements is low, which may not be realistic 
for many Asian bear populations. Additionally, differences in landscape influencing animal movements and camera sets (e.g., whether 
on trails or baited) can change the relationship between σ estimated from telemetry and camera traps and will limit the application of 
telemetry data sets from other locations and seasons. The lowest CV for USCR+ was found for female white-tailed deer (Odocoileus 
virginianus) when telemetry data were used to estimate a home range kernel (Johnson, 2019; Fig. 3). Average CV was 0.23 for females 
compared to 0.32 for males that show greater individual variability in home range movements (Karns et al., 2011). When only an 
informed σ was used to estimate fisher density (Burgar et al., 2018), CV ranged from 0.31 to 0.52, depending on the informed prior 
selected. In this comparison, using estimated home range kernels for estimation of white-tailed deer density (Johnson, 2019) not only 
resulted in greater precision compared to the fisher example, but reduced subjectivity in selection of a single informed prior for the 
scaling parameter. 

Spatial mark–resight (SMR) approaches build on USCR models but include information on a fraction of the population that have 
unique marks. More precisely, a portion of a bear population may have known marks (such as naturally occurring scars or researcher 
placed tags) while the remaining individuals are not uniquely identifiable. Mark–resight methods have been adapted within a SCR 
framework (SMR and generalized SMR, Gen-SMR; Efford and Hunter, 2018; Whittington et al., 2018) to allow for uncertainty in the 
proportion of marked animals sampled, missed or with unidentifiable marks (an extension of Gen-SMR; Jimenez et al., 2019), and 
when marked status is unknown (random thinning SMR; Jiménez et al., 2021). This approach has been further generalized to situations 
where partial identification extends to most individuals in the sampled population (Spatial Partial Identity Models, SPIMs; Augustine 
et al., 2019) where individuals do not need to be identifiable in all photographs. In most cases, estimate precision will be highly 
dependent on design, but also the proportion of individuals marked, and the identification rate of individuals with marks. A camera 
trap study in Canada was able to estimate brown bear density with high precision (CV = 0.12) using a generalized SMR model without 
telemetry data (Gen-SMR), 214 camera traps, and 22 easily identified, collared individuals (Whittington et al., 2018). Conversely, a 
study of Andean bears (Tremarctos ornatus) in Ecuador using 71 camera traps produced poor precision (CV = 0.40) when there was a 
large proportion of photos of individuals with facial markings that could not be identified (45 detections of marked individuals, 53 
unmarked detections, and 41 unknown status; Augustine et al. unpublished data). 

If sufficient ancillary data are available (e.g., kernels estimated from telemetry data or a sample of identifiable bears), USCR+ could 
be an effective method to address several monitoring needs (but see Ruprecht et al., 2021). While there will likely not be sufficient 
detections to fit models over single small reserves, more moderate sized reserves (many times the size of a bear home range) or a 
network of reserves within a region may be able to fit USCR+ models and estimate realized density for each parcel over the effective 
sampling area (also allowing for prioritization of areas for conservation actions). The USCR+ model may also be able to estimate 
population size for a geographically isolated population of sufficient size to generate detections of enough individuals, but the spatial 
extent of the population is not so large to require an overly extensive camera trapping grid (with spacing appropriate to animal ranging 
behavior). Under the right circumstances, USCR+ may also be able to provide a range of possible starting values for projection models 
in Red List Criterion E and validate surrogates or less intensive methods. Adequate sample size and spacing will be critical to achieving 
unbiased, precise estimates, and studies should not be implemented without a priori simulations to ensure costly monitoring activities 
can be expected to produce usable results. 

2.2.3. Random Encounter Model (REM), and Random Encounter and Staying Time model (REST) 
The remaining unmarked methods developed for camera traps (REM, REST, TTE, STE, IS, and CTDS) estimate density for the 

collective viewshed (area within view of the camera) of all cameras in the study area and assume what is estimated for the viewshed is 
representative of the population (Gilbert et al., 2021). The REM (Rowcliffe et al., 2008) and REST (Nakashima et al., 2018, 2020) 
extension use measurements or assumptions about animal movement (average speed) and detections at camera traps positioned 
randomly across a study area to estimate density based on the total area of all camera viewsheds (Rowcliffe et al., 2008). Cameras are 
stratified across heterogeneous habitats, and placed randomly with respect to animal movement, thus not positioned to maximize 
detections (i.e., not focused on trails or in relation to areas where animal activity would be higher such as feeding or resting areas), 
which may seem counterintuitive to most experienced camera trap researchers. 

Similar to the methods above, REM assumption violations result in biased estimates and precision can often be too large to detect 
meaningful differences (Fig. 3). For example, placing cameras in preferred areas would overestimate density to an unknown degree 
(Rowcliffe et al., 2008). The random placement requirement is especially problematic for low-density populations where detections 
would be especially low, reducing statistical power. Attaining enough detections of a sparse population over a time interval adhering to 
temporal closure will be difficult without a spatially extensive camera trap network. 

Total number of cameras also impacts precision. For example, Cusack et al. (2015) estimated density of lions (Panthera leo) with 
high to moderate precision (CI width = 0.50–1.10) from 167 to 168 camera trap locations over multiple months, whereas a study 
estimating American black bear density in Quebec, Canada, generated poor precision (0.39 CV) with 99 locations but only 3 weeks of 
operation (Pettigrew et al., 2021). The second greatest precision achieved for any study reviewed (CV = 0.09 for one site with 120 
cameras deployed over 6 nights) used the REM in a citizen science camera trap survey for hedgehogs over 7 survey areas (one surveyed 
in two consecutive years; Schaus et al., 2020). However, density of hedgehogs is exceptionally high (3.9–88.6/km2) relative to Asian 
bears, and the total survey effort resulted in 802 video detections (21% of footage) from 967 cameras and 6016 camera-trap nights, and 
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five of eight surveys still did not produce CV< 0.20 (including the lowest density estimate with CV = 0.38; Schaus et al., 2020). 
Ultimately, while achieving high precision is possible with this approach, it will require extensive sampling effort for low density 

populations, followed by extensive data processing (Palencia et al., 2021). Underestimation of average movement speed also over
estimates density (Carbajal-Borges et al., 2014; Loonam et al., 2020), as does not accounting for periods of inactivity (Cusack et al., 
2015). These biases can be compounded when movement and activity are different for different sampling areas or times (Pettigrew 
et al., 2021). Consequently, reliance on movement data from other study locations can be problematic. 

The REST model also assumes random placement of cameras relative to animal movement but uses the “staying time” within a 
viewshed (estimated either from video clips or in consecutive pictures from the camera trap data set) instead of independent estimates 
of movement speeds required for REM model, and may reduce the associated bias with biased estimates of speed (Nakashima et al., 
2018, 2020). However, these models have not yet been thoroughly scrutinized to understand power and biases that may result from 
estimates of staying time and an assumption of perfect detection within a viewshed (animals are never missed by cameras within the 
viewshed). A recent pilot study compared detection differences between two camera types and found that different detection prob
abilities for the camera types could bias estimates from the REST model by nearly 10% (Yajima and Nakashima, 2021). The initial 
application estimated duiker density with CV = 0.23–0.29 (Nakashima et al., 2018). 

Average CVs from a recently published comparison of methods with empirical data showed REST estimates had greater precision 
(mean CV = 0.28; Palencia et al., 2021) compared to REM and CTDS (described below), but the sample sizes required demonstrated the 
method may only be useful in high density populations. Another study estimated density of four sympatric ungulates occurring at 
different densities (Nakashima et al., 2020) and found precision was positively related to density estimates (3.6 and 0.39 CI width for 
lowest and highest density estimates, respectively). Noted of particular concern is when camera trap operation is compromised (e.g., 
trigger speeds are not fast enough, detection bursts are not complete, etc.), as this will result in, for example, estimates of staying time 
truncated by an unknown amount of time (Palencia et al., 2021). 

2.2.4. Time-to-Event (TTE), Space-to-Event (STE), and Instantaneous Sampling (IS) 
Like the REM, the TTE model (Moeller et al., 2018) also uses independently obtained estimates of movement rates, although for the 

TTE model these are only used to set an appropriate sampling period for estimation of the time to first detection (based on the average 
speed of individuals in a population, including periods of rest). The TTE model estimates abundance using repeated measures of the 
time it takes for the first motion-triggered photo to be collected on a camera, and the estimated time an individual could be expected to 
be found in a viewshed. The TTE model can be extended to estimate spatial variation in density and also be extended to allow for 
estimation of detection (otherwise assumed to be perfect; Moeller et al., 2018). However, as cameras are still placed randomly, 
detection rates may be too low for low-density species and it was initially only recommended for relatively moderate to high-density 
populations (Moeller et al., 2018). Nonetheless, it was found to provide estimates with acceptable precision for a population of sparsely 
distributed, solitary felids (Loonam et al., 2020). However, this study violated the assumption of random placement of camera traps 
and could therefore have resulted in biased, and potentially overly precise, estimates of density. 

The STE model and IS extension collapse the TTE detections to substitute space for time in the equation, eliminating the need for the 
inclusion of movement rates, but sacrifices precision as a result (Moeller et al., 2018). The STE and IS estimators require time-lapse 
photos instead of photos produced by a motion sensor. Instead of using the time required for an animal to pass in front of a cam
era, the method repeatedly samples the set of camera sites in a random fashion to find the number of camera sites required before a 
detection is recorded. This removes issues with variability in motion sensor and detector fields for cameras but can result in an 
enormous amount of data to process and be prohibitive for low-density species that will be rarely be detected using time-lapse photos. 
In the two available comparisons (Moeller, and Loonam et al., 2018, 2020), STE and IS models produced less precise estimates 
compared to TTE model. 

Increasing the duration of surveys can increase detection but will also violate the assumption that the individuals detected are those 
in the immediate proximity of a detector as more individuals may move through an area and be detected over time (akin to a temporal 
closure violation). Thus, keeping sampling sessions short will be particularly important for modeling spatial covariates on density 
(distribution of individuals is heterogeneous) in the TTE application, when camera traps are densely spaced, and when there are 
seasonal or migratory movement patterns that may occur with changes in available resources over time. When sample sizes are 
adequate, empirical evaluations of TTE have shown greater precision than other unmarked camera methods (CI width ranged from 
0.45 to 0.62 for cougars (Puma concolor) with 67 – 74 camera traps per site deployed over 5 months; Loonam et al., 2020), assuming 
estimates are unbiased. An evaluation of the TTE model using simulated walk models found estimates generally robust to territoriality 
and aggregation (both violate the assumptions of a Poisson distribution), but like REM models, misspecification of movement speeds 
can easily bias density estimates (Loonam et al., 2021), as will non-random placement of cameras. Since movement speeds are not 
currently available for Asian bears, methods requiring such data will not be useful until these data are obtained (using GPS-collared 
bears). 

2.2.5. Camera trap distance sampling (CTDS) 
Camera trap DS (Howe et al., 2017) uses data on the distances individuals are detected from the camera to correct for imperfect 

detection and estimate density within the collective viewshed, assuming this is representative of the total area of interest. Cameras are 
assumed to be placed randomly with respect to animal movement, and distance reference points within each camera viewshed must be 
measured during camera set-up, and for each detection during data processing, which requires additional time. Greater precision is 
achieved with greater numbers of detections within a viewshed to estimate distance detection functions well, and this can be 
accomplished using many cameras or longer duration surveys (as increased time of deployment also allows for more detections within 
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a single viewshed), but a threshold for a minimum number of camera trap stations is still evident (Cappelle et al., 2019; 2021). For 
example, Palencia et al. (2021) used CTDS to estimate red deer, wild boar, and red fox densities with CV = 0.42 using 20–25 camera 
traps deployed for 2–5 months. Although 20–25 camera locations are too few (Cappelle et al., 2021) and precision was not sufficient to 
detect a difference with 80% power, another study with cameras deployed at 743 locations for an average of 36 days only improved 
precision to an average CV = 0.37 (mean of 13 species, with one extremely poor outlier removed; Bessone et al., 2020). 

Based on a range of simulated designs, CTDS could be expected to produce density estimates with CV = 0.10–0.20 with 50 cameras 
deployed over 100 days (Cappelle et al., 2021). An empirical application in the same study with four times as many cameras (200 
camera traps) deployed for 8–10 months only achieved this level of precision using empirical designed-based variance for the most 
abundant species, Maxwell’s duiker (Philantomba maxwellii; D̂ = 19.7 individual/km2 and CV = 0.11) and bootstrapped variances 
produced CV< 0.20 for all but the least detected species (forest elephant; Loxodonta africana cyclotis), including for leopards (Panthera 
pardus; D̂ = 0.05 individual/km2 and CV = 0.18). 

Special consideration should be given to individual and population traits found to affect precision of CTDS estimates. First, het
erogeneity in spatial distribution of a population reduces overall precision. Precision may be increased by increasing sample sizes 
within different strata of expected density (Bessone et al., 2020). Second, distance sampling assumes the presence of the detector does 
not change the behavior of the detected animals, such as curious bears investigating cameras. To address substantial bias that can result 
from attraction or avoidance of cameras or human odors from camera trap deployment, Cappelle et al. (2018) left-truncated detections 
to eliminate photos of individuals inspecting cameras, while Bessone et al. (2020) removed all photos indicating reactivity and rec
ommended waiting until the end of the survey to conduct measurements of reference objects. 

Other considerations include estimating an animal’s availability for detection (a component of detection; Rowcliffe et al., 2014; 
Cappelle et al., 2019), which assumes an entire population is available for detection during the defined peak activity period (Cappelle 
et al., 2021). Cappelle et al. (2019) attempted to account for detection unavailability in chimpanzees due to their semi-arboreal nature, 
estimating activity time on the ground from the temporal distribution of camera trap records, which could have applicability to some 
Asian bears. Differences in availability estimates (described in Rowcliffe et al., 2014 and Cappelle et al., 2019) were negligible when 
sample sizes were large enough, but not accounting for detection unavailability could bias density estimates (Bessone et al., 2020). 
Additionally, one problem in such design-based approaches with potentially small camera viewsheds (typical in tropical forest en
vironments) is that the data gathered may be highly overdispersed and the sample selection of camera trap sites may not be repre
sentative of the larger area of inference. As a result, the conversion of density to abundance may not be straightforward. 

2.3. Hybrid approaches 

Recently developed integrated models incorporate multiple types of data including count and presence-non-detection data (Blanc 
et al., 2014; Zipkin et al., 2017), which can be collected at large spatial extents at relatively low cost. These data can be combined with 
more intensively collected capture-recapture data, which is usually restricted to smaller spatial extents due to the high cost and 
logistical considerations. 

Extending beyond integrating multiple data types, integrated population models combine abundance estimates with demographic 
rates like survival or reproduction (Schaub et al., 2007; Chandler and Clark, 2014). Chandler and Clark (2014) collected American 
black bear hair over a 6-year time period, but only genotyped hairs in alternate years in an effort to save money and to increase the 
temporal extent of sampling. In the 3 years with no genotyping, the hair data were modeled as detection data since there is no in
dividual identification. Simulations suggested that incorporation of the binary detection data resulted in increased precision and lower 
bias when compared with SCR data alone (Chandler and Clark, 2014). 

Recent efforts have combined systematic capture-recapture data collection on small study areas with opportunistically collected 
citizen science data conducted at a much larger spatial extent (Sun et al., 2019, 2021). Camera trap photos of American black bears 
collected by citizen scientists provided presence-non-detection data, which was combined with systematically collected SCR data, 
resulting in increased precision and accuracy of abundance estimates (Sun et al., 2019). Combining these two different data types 
required separate and independent detection processes for the SCR and presence-non-detection data. A useful model extension for 
Asian bears might be to allow for presence-only data such as that found in sign surveys or observations provided by local residents, 
which can be much quicker to process than camera trapping data. There are many methodological considerations when interpreting 
and processing sign data (Proctor et al., 2022) in addition to requiring a different detection process than presence-non-detection data. 
Further, when integrating presence-non-detection data with presence-only data, investigators should examine the data for spatial 
biases that often occur when using opportunistic data collection approaches (Simmonds et al., 2020). 

Another recent integrated SCR model incorporated one survey method with individual detections and another survey type with 
unidentified (unmarked) detections (Tourani et al., 2020). The model was applied to brown bears in Pakistan and the authors sug
gested that integrated multiple observation process models are most useful when detection probability is low, there are large number 
of unidentified detections (e.g., camera trap observations, or hair or fecal samples that fail to produce individual identities), and home 
range overlap among individuals is low. All examples of integrated population models suggest that data integration yields more 
reliable population estimates with increased precision and reduced bias, and therefore hold great promise for Asian bear population 
monitoring. 
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2.4. Other approaches with potential 

2.4.1. Line-transect distance sampling (LTDS) 
In some circumstances it may also be possible to estimate density using direct sightings of bears while conducting line transects for 

distance sampling (Thomas et al., 2010; Buckland et al., 2015). Distance models estimate density from detection probabilities based on 
the distance that individuals are observed from a transect line. One drawback of this method is it requires many visual observations to 
fit a detection function. Hence, this method will not be applicable in habitats with dense understory and reduced detection likelihood, 
as is the case for many Asian bear populations. However, this method has already been used extensively for polar bears (U. maritimus; 
Aars et al., 2009; Stapleton et al., 2014, 2016). There may be opportunities in more open habitats for sloth and brown bears and in 
areas where greater population densities allow for enough individuals to be detected. Distance models are design-based so do not 
require precise information about space use or movement rates. However, an important assumption is that animals do not move before 
being observed (e.g., away from the observer) or after being observed and then observed again. Study design tools exist within 
available software to aid in study design and sampling effort (Thomas et al., 2010; Buckland et al., 2015; Marshall, 2019; Miller et al., 
2019). Perhaps the most promising application of this method is using sloth bear detections recorded during large-scale ungulate 
survey transects conducted regularly within the Malenad landscape of India (Karanth et al., 2020). In this case, it may be possible to 
combine detection distances over years of sampling to fit detection functions, even though encounters of sloth bears in any single year 
are likely be too low for a sparsely distributed population. 

2.4.2. Estimating trend from age specific survival and reproduction 
The trend of a population can be estimated by combining age-specific survival and reproduction in a projection model, assuming a 

stable age distribution (Caswell, 2000). For bears, this method typically relies on monitoring females with radio-collars. This method 
has been used in North America on brown bears but requires extensive amounts of data on individual collared bears (Garshelis et al., 
2005; Mace et al., 2012; McLellan, 1989; 2015; McLellan et al., 2021; Schwartz et al., 2006). Although there have been some studies 
employing collared bears in Asia, sample sizes have generally not been adequate to produce sufficiently precise estimates of repro
duction and survival. 

An advantage of trend estimates generated from measures of age-specific reproduction and survival is that they indicate how well 
the population is coping under the current conditions (Caughley, 1977; McLellan, 1989; Schwartz et al., 2006). Also, unlike estimating 
trend from two or more estimates or even using open capture-recapture methods, monitoring radio-collared animals can provide 
detailed information on the reasons why the population is changing, specifically the identification of factors impacting reproduction or 
survival. The main challenge with radio collar studies is obtaining adequate sample sizes to allow precise estimates of trend. A solution 
is to incorporate multiple data sources from collars, surveys, and other demographic indicators through the use of integrated popu
lation models. 

2.5. When limitations prohibit the estimation of abundance, density, or population trends with precision 

We have focused on methods with potential to estimate abundance, density, and population trends with precision. However, these 
approaches may not always be possible for a variety of reasons (financial limitations, expertise, small spatial extent limiting sample 
sizes, etc.) which could be verified using simulations of possible study designs. For example, it will be difficult to estimate abundance 
or density with high precision within small areas that contain few individuals. When this is the case, we still urge researchers to 
consider methods that can result in individual identification, because it will allow for inclusion in larger collaborative efforts and can 
provide baseline data for future studies. Thus, effort should still be made to identify individuals, either by chest blazes for Asiatic black 
bears, sun bears, and sloth bears, or by collecting hair and scat for genetic identification (see Proctor et al., 2022). 

The minimum number of individuals detected can provide a rough but useful population estimate in a very small population, which 
should be much better for monitoring than indices such as sign/ha or photos/100 trap-nights, which can be a biased surrogate of 
abundance (Sollmann et al., 2013b). When sampling is evenly stratified and individual detection rates are high, number of individuals 
detected can trend well with changes in abundance (Slade and Blair, 2000), but this should only be used when an area is small enough 
that sampling can achieve adequate coverage of all possible individuals. For example, this method has been successfully applied with 
small populations of rhinos in Asia where individuals are identifiable on camera trap photos (Haryono et al., 2015). An important 
assumption of this method is that detection rates are sufficiently high such that a large portion of the population is identified, and each 
subsequent sample has similarly high detection so that results are not simply a random draw of a sliver of the population (White, 2005; 
Bischof et al., 2020). Lures may be particularly useful for this method so as to significantly increase detection. Even when using 
minimum numbers of individuals detected, detection probabilities can be estimated using the same repeated sampling as 
capture-recapture methods, with the number of times individuals are detected divided by the number of possible detections, to ensure 
that detection rates are high enough to assume correlation with local abundance. Spatial locations should also be recorded as the 
individual detections could be used later as part of a larger data set over time or as part of a more extensive collaboration. 

2.6. Targeted monitoring 

Ultimately, monitoring efforts should be structured to detect changes in populations and investigate potential causes of the decline 
(“targeted monitoring”, sensu Nichols and Williams, 2006). In some cases, tracking relationships between demographic parameters 
and these covariates can provide more inference and power than just tracking trends in abundance. Several methods described above 
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(SCR, OPSCR, CTDS, and TTE models) incorporate spatial covariates that could allow for extrapolation across a larger spatial extent to 
assess spatial and temporal trends. The effect size of change may be more pronounced in parts of a study area, identifiable using 
covariates or density surface models. For example, Kendall et al. (2019) used SCR to analyze trend in grizzly bears. While their overall 
estimate of λ had wide confidence limits, their study documented hot spots of notable trends within the focal study area. Other studies 
have linked bear population trends to salmon abundance in a coastal area (Boulanger et al., 2004) as well as static values of risk and 
resource selection function values (Boulanger et al., 2018). In all these cases, the precision of density or trend estimates was not high; 
however, density could be inferred through the use of covariate relationships. Thus, there is often more information in mark–recapture 
data sets than just point estimates of density or abundance and we suggest researchers use various tools available to assess components 
of variation that produce the observed trend. 

However, extrapolation may be limited if poaching is the greatest driver of change, since this attribute is difficult to measure (but 
see Moore et al., 2021). Density estimation methods could be used to search for more specific attributes correlated with population 
declines, such as changes in human activity, or encroachment of human land use, but these will need to be included a priori in study 
designs to ensure adequate variation in covariates sampled. Working within an adaptive monitoring framework (Lyons et al., 2008; 
Lindenmayer and Likens, 2009) with clearly defined objectives will allow for continued evaluation of causes of change, and updating 
and refining our understanding of threats and boons to Asian bear populations. 

3. Current needs and future directions 

Estimating Asian bear population densities or trends will require extensive effort and coordination to be effective. Currently, only 
methods that include individual identification (SCR, OPSCR, SMR) have been shown to yield the precision needed to detect even 
declines of 50% in bear populations. Sample sizes requirements will generally prohibit the use of unmarked methods for low density 
populations (Duarte et al., 2018; Moeller et al., 2018; Bessone et al., 2020). Further, while unmarked methods require less information 
and model parameters, there is far greater risk of bias in estimates resulting from model assumptions that are difficult to validate. The 
inconsistencies in precision of unmarked empirical estimates, even within the same study designs, sites, and species (Table 3), likely 
demonstrate unaccounted assumption violations pertaining to animal movement and we would expect these issues to extend to most 
Asian bear populations. 

More studies evaluating the success of different hair snare devices (Tee et al., 2020), genetic amplification rates (Phoebus et al., 
2020; Tee et al., 2020) and camera trap setups (Ngoprasert et al., 2012; Higashide et al., 2020) that yield high success in individual 
identification will be particularly useful for future monitoring studies. Whereas detection can be significantly improved with lures, 
these would create a bias in current unmarked methods; however, behavioral responses to lures or bait can be incorporated into SCR 
models and are likely essential in obtaining an adequate sample size of captures and recaptures. Hence, research into effective lures or 
baits is well worth the effort, especially since attractiveness is known to vary by species and even study site (Ngoprasert, unpublished 
data). Given the effort needed to identify individuals by chest marks and the low identification rate in camera trap photos, SMR using 
individuals identified with confidence as the marked proportion of the population (Whittington et al., 2018) or an extension to 
Gen-SMR models that allows for marks to not always be identified (Jimenez et al., 2019) is a promising approach for camera trap 
monitoring of sun, sloth bears, and Asiatic black bears. 

Unmarked camera trap methods such as REST, STE, and CTDS may be able to detect very large population increases or decreases 
(>80%) in Asian bear populations, as may REM, TTE and USCR+ approaches if local telemetry data are available or a large enough 
proportion of the target population is marked. However, practitioners should be aware of the low power of these methods to detect 
smaller changes (Fig. 3) even when assumptions are met, especially with low numbers of individuals and/or a low number of camera 
trap locations. Thus, it may be prudent to evaluate the cost and effort associated with an extensive camera trap effort aimed at 
estimating abundance, but only able to detect catastrophic declines, compared to occupancy surveys that could be conducted with 
fewer cameras or even sign, and would likely be able to detect similar magnitudes of population change across a landscape (Sunarto 
et al., 2012; Karanth et al., 2020) or evaluate conservation success (Linkie et al., 2015). 

The potential of unmarked methods to estimate abundance requires more critical assessment. There has been a plethora of recent 
publications comparing SCR estimates to unmarked methods, but rarely is the information provided to allow practitioners to truly 
assess the usefulness of these methods. Methods that account for individual identity will likely always outperform unmarked methods 
in estimation, but still may lack adequate precision if not properly designed and implemented (Efford and Boulanger, 2019; Green 
et al., 2020). This is easily demonstrated by comparing CVs (as we have done here), which is more useful than examining overlap of 
confidence intervals. For example, in one study Bayesian Credible Intervals overlapped for all comparisons of fisher density estimates 
(Burgar et al., 2018), but unmarked estimates had much larger CVs (CVs were 70–148% times larger using USCR approaches). By 
providing the CV the authors allowed for the approach to be considered in terms of specific objectives, correctly identified limitations 
to the approach, and were able to discuss future directions for improvement. Our review highlights the importance of empirical studies 
in validating methods for field applications, but we need to be honest in our assessments and focus on the success of the application in 
terms of ability to meet objectives. We encourage researchers to report and discuss dispersion for estimates and CV, not just the 
convergence of estimates. The power calculations provided in Table 2 here and Appendix S3 in Efford and Boulanger (2019) allow for 
explicitly assessing trade-offs between Type I and Type II error rates (as do the simulations in Schaus et al. (2020)). 

While telemetry studies are expensive, invasive, and difficult to implement, many methods of monitoring may benefit from home 
range estimates, movement rates, vital rates, and other information that can be gathered from collared bears. Home range estimates 
from specific areas for different species can improve SCR study designs and inform USCR(+) model parameters. Resource selection 
functions can be incorporated into SCR models and increase precision and enhance inference using informative covariates (Royle et al., 
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2013; Sollmann et al., 2016; McClintock et al., 2021). Movement rates could be estimated from telemetry data for TTE and REM 
models and assumptions about independence of individual bear movements could be tested. Finally, collaring individuals could allow 
for known fate survival, although we recognize this may be especially difficult in many places in Asia, where poaching may be the main 
cause of mortality (and most poached bears would not be found). While it would take years of data and large sample sizes to estimate 
trends with matrix models (Garshelis et al., 2005), detecting changes in survival or recruitment may be the only way to monitor new 
threats or improvements for small populations or areas over time (Laufenberg et al., 2018; Harihar et al., 2020). Cormack-Jolly-Seber 
models (Lebreton et al., 1992) and other open population models that use detections of marked individuals over time (genetic, natural, 
or placed marks) may also allow for monitoring of changes in population without estimating density or growth and lead to future 
collaborations including larger OPSCR efforts (Bischof et al., 2020) or inclusions in integrated population models (Schaub and Abadi, 
2011), other open population models (Hostetter et al., 2021), or long-term integrated assessments (Laufenberg et al., 2018, McLellan 
et al., 2019). 

4. Conclusions 

Effective monitoring requires a critical evaluation of methods and their assumptions in relation to the ecology and behavior of the 
species, likely population size and geographical extent, logistical and financial constraints, and specific aims in terms of an observable 
magnitude of population change. We strongly encourage study-specific simulations and power analyses to help to ensure that study 
designs are effective. Crucially important is that significant population declines are detected with sufficient time to act. This will 
require high precision and accordingly large sample sizes. For low density populations, this will require extensive spatial scales and 
thus collaborations and coordination of study designs and sampling protocols. Our guidance follows the example set by tiger con
servation efforts in India (Karanth et al., 2020) and apex predator conservation in Scandinavia (Bischof et al., 2020). 
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