178 research outputs found
Particle trapping in a stratified flood-dominated estuary
Observations in the Navesink River estuary in northern New Jersey demonstrate that buoyancy augments the particle trapping tendencies of flood-dominated systems because these estuaries heighten tidal period asymmetries in stratification. During the long and slow ebb which typifies flood-dominated systems, a positive feedback between tidal straining and weak vertical mixing stratifies the estuary. In contrast, during flood, turbulence generated by the stronger tidal currents augments overstraining of the density field and the water column becomes well mixed. The tidal period asymmetries in stratification have profound effects on the vertical structure and transport of suspended matter. During ebb, weak vertical mixing allows suspended material to settle downward. In contrast, strong turbulence during flood mixes suspended matter into the water column where it is transported up estuary. Furthermore, observations reveal that resuspension events are marked by multiple turbidity spikes, suggestive of multiple, limited layers of erodible material. The transport of the turbid waters is consistent with horizontal advection modified by horizontal dispersion. Periods of enhanced stratification are also marked by relatively low levels of turbidity during the ebb, consistent with more complete settling of suspended material following times of high river discharge. The interplay between buoyancy and tidal asymmetries are further elucidated with a onedimensional numerical model featuring a turbulent closure scheme and a passively settling tracer. Model results are generally consistent with the field observations, both emphasizing the robust particle trapping tendencies of a stratified flood-dominated estuary. We speculate that enhanced particle trapping following times of high river discharge may have important biological consequences
Tidal and spring-neap variations in horizontal dispersion in a partially mixed estuary
Author Posting. Ā© American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07023, doi:10.1029/2007JC004644.A sequence of dye releases in the Hudson River estuary provide a quantitative assessment of horizontal dispersion in a partially mixed estuary. Dye was released in the bottom boundary layer on 4 separate occasions, with varying tidal phase and spring-neap conditions. The three-dimensional distribution of dye was monitored by two vessels with in situ, profiling fluorometers. The three-dimensional spreading of the dye was estimated by calculating the time derivative of the second moment of the dye in the along-estuary, cross-estuary and vertical directions. The average along-estuary dispersion rate was about 100 m2/s, but maximum rates up to 700 m2/s occurred during ebb tides, and minimum rates occurred during flood. Vertical shear dispersion was the principal mechanism during neap tides, but transverse shear dispersion became more important during springs. Suppression of mixing across the pycnocline limited the vertical extent of the patch in all but the maximum spring-tide conditions, with vertical diffusivities in the pycnocline estimated at 4 Ć 10ā5 m2/s during neaps. The limited vertical extent of the dye patch limited the dispersion of the dye relative to the overall estuarine dispersion rate, which was an order of magnitude greater than that of the dye. This study indicates that the effective dispersion of waterborne material in an estuary depends sensitively on its vertical distribution as well as the phase of the spring-neap cycle.This research was supported by National Science Foundation
Grant OCE04-52054 (W. Geyer), OCE00-99310 (R. Houghton), and
OCE00-95913 (R. Chant)
Effects of locally generated wind waves on the momentum budget and subtidal exchange in a coastal plain estuary
Author Posting. Ā© American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(2), (2019):1005-1028, doi:10.1029/2018JC014585.A numerical model with a vortex force formalism is used to study the role of wind waves in the momentum budget and subtidal exchange of a shallow coastal plain estuary, Delaware Bay. Wave height and age in the bay have a spatial distribution that is controlled by bathymetry and fetch, with implications for the surface drag coefficient in young, underdeveloped seas. Inclusion of waves in the model leads to increases in the surface drag coefficient by up to 30% with respect to parameterizations in which surface drag is only a function of wind speed, in agreement with recent observations of airāsea fluxes in estuaries. The model was modified to prevent whitecapping wave dissipation from generating breaking forces since that contribution is integrally equivalent to the wind stress. The proposed adjustment is consistent with previous studies of waveāinduced nearshore currents and with additional parameterizations for breaking forces in the model. The mean momentum balance during a simulated wind event was mainly between the pressure gradient force and surface stress, with negligible contributions by vortex, wave breaking (i.e., depthāinduced), and StokesāCoriolis forces. Modeled scenarios with realistic Delaware bathymetry suggest that the subtidal bayāocean exchange at storm time scales is sensitive to waveāinduced surface drag coefficient, wind direction, and mass transport due to the Stokes drift. Results herein are applicable to shallow coastal systems where the typical wave field is young (i.e., wind seas) and modulated by bathymetry.This work was supported by National Science Foundation Coastal SEES grant 1325136. We acknowledge Christopher Sommerfield's Group, JiaāLin Chen, and Julia Levin who provided assistance with the model configuration. We also thank Nirnimesh Kumar, Greg Gerbi, Melissa Moulton, and the Rutgers Ocean Modeling group for constructive feedback. Insightful comments by two anonymous reviewers helped improve the manuscript. Model files are available in an open access repository (https://doi.org/10.5281/zenodo.1695900).2019-07-2
Rates of treated schizophrenia and its clinical and cultural features in the population isolate of the Iban of Sarawak: a tri-diagnostic approach
Background. We present results of a study of treated rates of schizophrenia among the Iban of Sarawak, Malaysia. Most Iban live in longhouses, each comprising a kindred group of up to 300 individuals. Cultural practices such as minimal intermarriage with members of adjacent ethnic groups and in-depth genealogical knowledge make them a population suitable for genetic investigation. Iban culture is conducive to a focus on symptoms and illness, and to patterns of treatment-seeking behaviour that are enthusiastic and persistent.
Method. We identified all known cases of psychotic disorder within a defined catchment area based on an exhaustive survey of available medical records. From corresponding Malaysian census data (91056 persons), we report rates of treated schizophrenia in the Iban population, using three diagnostic systems, as well as the demographic and clinical characteristics of these individuals.
Results. The most frequent presenting complaints were insomnia and aggression. We found higher treated rates for narrowly defined schizophrenia among males, but no significant gender difference for age of onset. Estimates of treated rates to age 55 years (per 10000) for narrow schizophrenia were 41Ā·9 (ICD-10), 56Ā·5 (DSM-IV), and 83 (RDC), while the rates for broad schizophrenia were 105Ā·5, 103Ā·2, and 107Ā·5 respectively.
Conclusions. Treated rates of schizophrenia were higher than the reported prevalence for many populations at risk, including many small-scale societies, although different methodological approaches may partly explain these findings. Given the cultural patterns of Iban treatment-seeking behaviour, treated rates of schizophrenia reported here may closely approximate the population prevalence of this disorder.Robert Barrett, Peter Loa, Edward Jerah, Derek Nancarrow, David Chant and Bryan Mowr
Estuarine boundary layer mixing processes : insights from dye experiments
Author Posting. Ā© American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1859-1877, doi:10.1175/jpo3088.1.A series of dye releases in the Hudson River estuary elucidated diapycnal mixing rates and temporal variability over tidal and fortnightly time scales. Dye was injected in the bottom boundary layer for each of four releases during different phases of the tide and of the springāneap cycle. Diapycnal mixing occurs primarily through entrainment that is driven by shear production in the bottom boundary layer. On flood the dye extended vertically through the bottom mixed layer, and its concentration decreased abruptly near the base of the pycnocline, usually at a height corresponding to a velocity maximum. Boundary layer growth is consistent with a one-dimensional, stress-driven entrainment model. A model was developed for the vertical structure of the vertical eddy viscosity in the flood tide boundary layer that is proportional to u2*/Nā, where u* and Nā are the bottom friction velocity and buoyancy frequency above the boundary layer. The model also predicts that the buoyancy flux averaged over the bottom boundary layer is equal to 0.06Nāu2* or, based on the structure of the boundary layer equal to 0.1NBLu2*, where NBL is the buoyancy frequency across the flood-tide boundary layer. Estimates of shear production and buoyancy flux indicate that the flux Richardson number in the flood-tide boundary layer is 0.1ā0.18, consistent with the model indicating that the flux Richardson number is between 0.1 and 0.14. During ebb, the boundary layer was more stratified, and its vertical extent was not as sharply delineated as in the flood. During neap tide the rate of mixing during ebb was significantly weaker than on flood, owing to reduced bottom stress and stabilization by stratification. As tidal amplitude increased ebb mixing increased and more closely resembled the boundary layer entrainment process observed during the flood. Tidal straining modestly increased the entrainment rate during the flood, and it restratified the boundary layer and inhibited mixing during the ebb.The work was supported by the
National Science Foundation Grant OCE00-95972 (W.
Geyer, J. Lerczak), OCE00-99310 (R. Houghton), and
OCE00-95913 (R. Chant, E. Hunter)
Wave generation, dissipation, and disequilibrium in an embayment with complex bathymetry
Author Posting. Ā© American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Wave generation, dissipation, and disequilibrium in an embayment with complex bathymetry. Journal of Geophysical Research-Oceans, 123(11), (2018): 7856-7876, doi:10.1029/2018JC014381.Heterogeneous, sharply varying bathymetry is common in estuaries and embayments, and complex interactions between the bathymetry and wave processes fundamentally alter the distribution of wave energy. The mechanisms that control the generation and dissipation of wind waves in an embayment with heterogeneous, sharply varying bathymetry are evaluated with an observational and numerical study of the Delaware Estuary. Waves in the lower bay depend on both local wind forcing and remote wave forcing from offshore, but elsewhere in the estuary waves are controlled by the local winds and the response of the wavefield to bathymetric variability. Differences in the wavefield with wind direction highlight the impacts of heterogeneous bathymetry and limited fetch. Under the typical winter northwest wind conditions waves are fetchālimited in the middle estuary and reach equilibrium with local water depth only in the lower bay. During southerly wind conditions typical of storms, wave energy is near equilibrium in the lower bay, and midestuary waves are attenuated by the combination of whitecapping and bottom friction, particularly over the steep, longitudinal shoals. Although the energy dissipation due to bottom friction is generally small relative to whitecapping, it becomes significant where the waves shoal abruptly due to steep bottom topography. In contrast, directional spreading keeps wave heights in the main channel significantly less than local equilibrium. The wave disequilibrium in the deep navigational channel explains why the marked increase in depth by dredging of the modern channel has had little impact on wave conditions.Funding was provided by National Science Foundation Coastal SEES: Toward Sustainable Urban Estuaries in the Anthropocene (OCE 1325136) and Ministry of Science and Technology (MOST 107ā2611āMā006ā004). We thank James Kirby, Fengyan Shi, and the two anonymous reviewers for their careful reading of our manuscript and their insightful comments. We thank Tracy Quirk for providing wave measurements in Bombay Hook, DE and Stow Creek, NJ. We thank Katie Pijanowski for compiling historical and modern bathymetric data for the estuary. Data supporting this study are posted to Zenodo (http://doi.org/10.5281/zenodo.1433055).2019-04-0
Recommended from our members
Impact of Offshore Winds on a Buoyant River Plume System
Idealized numerical simulations utilizing the Regional Ocean Modeling System (ROMS) are carried out to examine the response of buoyant river plume systems to offshore-directed wind stresses. It is found that after a few inertial periods of wind forcing the plume becomes detached from the coast and reaches a steady state in terms of the plumeās offshore position, width, and plume-averaged depth, salinity, and velocity. The steady-state offshore position of the plume is a balance between the cross-shore advection driven by the estuarine outflow and the alongshore advection driven by the Ekman velocities, and is described using the ratio of the outflow Froude number and the plume Froude number. The steady-state salinity structure is maintained by a balance between the cross-shore advection of salt creating stratification, the turbulent vertical mixing, and the downstream transport of freshwater continually resetting the system. Plume mixing is also analyzed using a salinity coordinate system to track the changes in freshwater volume in salinity space and time. A dynamical plume region classification is developed with use of a Richardson numberābased critical mixing salinity criterion in salinity space. This salinity classābased classification agrees well with a classification based on an alongshore analysis of the salt flux equation. For this classification the near field is dominated by large cross-shore fluxes and the midfield by a diminishing cross-shore salt flux, and in the far field there is a balance between the alongshore salt flux and turbulent mixing
Turbulent mixing in a farāfield plume during the transition to upwelling conditions : microstructure observations from an AUV
Author Posting. Ā© American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 45 (2018): 9765-9773, doi:10.1029/2018GL078543.A REMUS 600 autonomous underwater vehicle was used to measure turbulent mixing within the farāfield Chesapeake Bay plume during the transition to upwelling. Prior to the onset of upwelling, the plume was mixed by a combination of energetic downwelling winds and bottomāgenerated shear resulting in a twoālayer plume structure. Estimates of turbulent dissipation and buoyancy flux from a noseāmounted microstructure system indicate that scalar exchange within the plume was patchy and transient, with direct wind mixing constrained to the near surface by stratification within the plume. Changing wind and tide conditions contributed to temporal variability. Following the separation of the upper plume from the coast, alongshore shear became a significant driver of mixing on the shoreward edge of the plume.NSF Grant Numbers: OCEā1334231, OCEā1745258, OCEā13343982019-03-2
Vertical distribution of bivalve larvae along a cross-shelf transect during summer upwelling and downwelling
Abstract Previous time-series studies of meroplankton abundances in the LEO-15 research area off Tuckerton, New Jersey, USA (39Ā°28Ā¢N, 74Ā°15Ā¢W) indicated shortlived (6-12 h) pulses in larval surfclam (Spisula solidissima Dillwyn) concentration often associated with the initiation of downwelling. To examine possible larval surfclam (and other bivalve) concentrating mechanisms during upwelling and downwelling, six sets of adaptive mobile zooplankton pump samples were taken in July 1998 at different depths at five to six stations along a 25-km transect perpendicular to the coastline and crossing Beach Haven Ridge at LEO-15. Sampling was guided by near real-time, satellite imagery of sea surface temperature overlain by sea surface currents from a shore-based ocean surface current radar (OSCR) unit. A Seabird CTD on the mobile pump frame near the intake provided information on thermocline depth, and sampling depths were adjusted according to the temperature profiles. Near shore, the thermocline was tilted down during downwelling, and up during upwelling. The highest concentrations of surfclam larvae occurred near the bottom at a station near Beach Haven Ridge during downwelling, and just above the thermocline 3 km further offshore during well-developed upwelling. For other bivalve taxa, the larvae were concentrated near the thermocline (Anomia simplex Orbigny and Pholadidae spp.) or concentrated upslope near the bottom (Mytilidae spp.) during upwelling, and the larvae were concentrated near the bottom or were moved downslope during downwelling. Donax fossor Say larvae were found near the surface or above the thermocline during upwelling and downwelling. The general patterns of larval bivalve distribution appear to be influenced by water mass movement during upwelling and downwelling. The larval concentration patterns of individual species are likely a consequence of advection due to upwelling and downwelling circulation, vertical shear in the front region, species-specific larval behaviors, and larval sources
Recommended from our members
Mechanisms Driving the Time-Dependent Salt Flux in a Partially Stratified Estuary
The subtidal salt balance and the mechanisms driving the downgradient salt flux in the Hudson River estuary are investigated using measurements from a cross-channel mooring array of current meters, temperature and conductivity sensors, and cross-channel and along-estuary shipboard surveys obtained during the spring of 2002. Steady (subtidal) vertical shear dispersion, resulting from the estuarine exchange flow, was the dominant mechanism driving the downgradient salt flux, and varied by over an order of magnitude over the springāneap cycle, with maximum values during neap tides and minimum values during spring tides. Corresponding longitudinal dispersion rates were as big as 2500 mĀ² sā»Ā¹ during neap tides. The salinity intrusion was not in a steady balance during the study period. During spring tides, the oceanward advective salt flux resulting from the net outflow balanced the time rate of change of salt content landward of the study site, and salt was flushed out of the estuary. During neap tides, the landward steady shear dispersion salt flux exceeded the oceanward advective salt flux, and salt entered the estuary. Factor-of-4 variations in the salt content occurred at the springāneap time scale and at the time scale of variations in the net outflow. On average, the salt flux resulting from tidal correlations between currents and salinity (tidal oscillatory salt flux) was an order of magnitude smaller than that resulting from steady shear dispersion. During neap tides, this flux was minimal (or slightly countergradient) and was due to correlations between tidal currents and vertical excursions of the halocline. During spring tides, the tidal oscillatory salt flux was driven primarily by oscillatory shear dispersion, with an associated longitudinal dispersion rate of about 130 mĀ² sā»Ā¹
- ā¦