33 research outputs found

    Rescue of a H3N2 Influenza Virus Containing a Deficient Neuraminidase Protein by a Hemagglutinin with a Low Receptor-Binding Affinity

    Get PDF
    Influenza viruses possess at their surface two glycoproteins, the hemagglutinin and the neuraminidase, of which the antagonistic functions have to be well balanced for the virus to grow efficiently. Ferraris et al. isolated in 2003–2004 viruses lacking both a NA gene and protein (H3NA- viruses) (Ferraris O., 2006, Vaccine, 24(44–46):6656-9). In this study we showed that the hemagglutinins of two of the H3NA- viruses have reduced affinity for SAα2.6Gal receptors, between 49 and 128 times lower than that of the A/Moscow/10/99 (H3N2) virus and no detectable affinity for SAα2.3Gal receptors. We also showed that the low hemagglutinin affinity of the H3NA- viruses compensates for the lack of NA activity and allows the restoration of the growth of an A/Moscow/10/99 virus deficient in neuraminidase. These observations increase our understanding of H3NA- viruses in relation to the balance between the functional activities of the neuraminidase and hemagglutinin

    Detection of Nonnucleoside Reverse‐Transcriptase Inhibitor–Resistant HIV‐1 after Discontinuation of Virologically Suppressive Antiretroviral Therapy

    Get PDF
    Using standard and ultrasensitive techniques, we detected nonnucleoside reverse-transcriptase inhibitor–associated resistance mutations in 11 (20%) of 54 subjects who discontinued virologically suppressive nonnucleoside reverse-transcriptase inhibitor–containing antiretroviral therapy. Resistance was detected in 45% and 14% of subjects with a baseline human immunodeficiency virus type 1 RNA level of 51–400 copies/mL and ≀50 copies/mL, respectively. Mutations remained detectable for at least 48 weeks in some subjects

    FK-506 and Cyclosporin a Inhibit Highly Similar Signal Transduction Pathways in Human T Lymphocytes

    No full text
    This report compares the ability of cyclosporin A and FK-506 to inhibit human T cell activation triggered via cell surface molecules that utilize different intracellular processes. We stimulated highly purified peripheral blood T lymphocytes with mitogens (Con A and PHA), ionomycin + PMA, or monoclonal antibodies specific for cell surface antigens involved in activation (CD2, CD3, CD28) either in combination with each other or in conjunction with PMA. Using measurements of the proliferative response, IL-2 production, and changes in intracellular Ca2+ ([Ca2+]i), we demonstrate that FK-506 exerts its inhibitory effect on early events of T-cell activation in a manner indistinguishable from that of CsA. An important finding in this study is the strict correlation between those activation pathways that are inhibited by FK-506 and CsA and the requirement that the sensitive pathways induce a measurable rise in [Ca2+]i. This correlation held even for the CD28/CD2 pathway which was previously shown to be calcium-independent; however by employing FACS analysis of [Ca2+]i within individual cells, a subset of cells activated via CD28/CD2 was found to respond with a measurable rise in [Ca2+]i. We also noted that the proliferative response induced by certain stimuli, such as ionomycin + PMA and PHA + PMA, was partially resistant to FK-506 and CsA, while IL-2 production was completely suppressed. The partial FK-506/CsA-resistance of these responses was shown to be determined by the amount of PMA added to the cultures. We conclude from our investigations that FK-506 and CsA inhibit highly similar signal transduction pathways in human T lymphocytes

    Unique Anti-Human Immunodeficiency Virus Activities of the Nonnucleoside Reverse Transcriptase Inhibitors Calanolide A, Costatolide, and Dihydrocostatolide

    No full text
    (+)-Calanolide A (NSC 650886) has previously been reported to be a unique and specific nonnucleoside inhibitor of the reverse transcriptase (RT) of human immunodeficiency virus (HIV) type 1 (HIV-1) (M. J. Currens et al., J. Pharmacol. Exp. Ther., 279:645–651, 1996). Two isomers of calanolide A, (−)-calanolide B (NSC 661122; costatolide) and (−)-dihydrocalanolide B (NSC 661123; dihydrocostatolide), possess antiviral properties similar to those of calanolide A. Each of these three compounds possesses the phenotypic properties ascribed to the pharmacologic class of nonnucleoside RT inhibitors (NNRTIs). The calanolide analogs, however, exhibit 10-fold enhanced antiviral activity against drug-resistant viruses that bear the most prevalent NNRTI resistance that is engendered by amino acid change Y181C in the RT. Further enhancement of activity is observed with RTs that possess the Y181C change together with mutations that yield resistance to AZT. In addition, enzymatic inhibition assays have demonstrated that the compounds inhibit RT through a mechanism that affects both the K(m) for dTTP and the V(max), i.e., mixed-type inhibition. In fresh human cells, costatolide and dihydrocostatolide are highly effective inhibitors of low-passage clinical virus strains, including those representative of the various HIV-1 clade strains, syncytium-inducing and non-syncytium-inducing isolates, and T-tropic and monocyte-tropic isolates. Similar to calanolide A, decreased activities of the two isomers were observed against viruses and RTs with amino acid changes at residues L100, K103, T139, and Y188 in the RT, although costatolide exhibited a smaller loss of activity against many of these NNRTI-resistant isolates. Comparison of cross-resistance data obtained with a panel of NNRTI-resistant virus strains suggests that each of the three stereoisomers may interact differently with the RT, despite their high degree of structural similarity. Selection of viruses resistant to each of the three compounds in a variety of cell lines yielded viruses with T139I, L100I, Y188H, or L187F amino acid changes in the RT. Similarly, a variety of resistant virus strains with different amino acid changes were selected in cell culture when the calanolide analogs were used in combination with other active anti-HIV agents, including nucleoside and nonnucleoside RT and protease inhibitors. In assays with combinations of anti-HIV agents, costatolide exhibited synergy with these anti-HIV agents. The calanolide isomers represent a novel and distinct subgroup of the NNRTI family, and these data suggest that a compound of the calanolide A series, such as costatolide, should be evaluated further for therapeutic use in combination with other anti-HIV agents

    Identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery.

    No full text
    One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology

    Detection of Nonnucleoside Reverse‐Transcriptase Inhibitor–Resistant HIV‐1 after Discontinuation of Virologically Suppressive Antiretroviral Therapy

    No full text
    Using standard and ultrasensitive techniques, we detected nonnucleoside reverse-transcriptase inhibitor–associated resistance mutations in 11 (20%) of 54 subjects who discontinued virologically suppressive nonnucleoside reverse-transcriptase inhibitor–containing antiretroviral therapy. Resistance was detected in 45% and 14% of subjects with a baseline human immunodeficiency virus type 1 RNA level of 51–400 copies/mL and ≀50 copies/mL, respectively. Mutations remained detectable for at least 48 weeks in some subjects
    corecore