34 research outputs found
Characterising the refractive error in paediatric patients with congenital stationary night blindness: a multicentre study
BACKGROUND/AAIMS: Congenital stationary night blindness (CSNB) is an inherited retinal disease that is often associated with high myopia and can be caused by pathological variants in multiple genes, most commonly CACNA1F, NYX and TRPM1. High myopia is associated with retinal degeneration and increased risk for retinal detachment. Slowing the progression of myopia in patients with CSNB would likely be beneficial in reducing risk, but before interventions can be considered, it is important to understand the natural history of myopic progression. METHODS: This multicentre, retrospective study explored CSNB caused by variants in CACNA1F, NYX or TRPM1 in patients who had at least 6 measurements of their spherical equivalent of refraction (SER) before the age of 18. A mixed-effect model was used to predict progression of SER overtime and differences between genotypes were evaluated. RESULTS: 78 individuals were included in this study. All genotypes showed a significant myopic predicted SER at birth (-3.076D, -5.511D and -5.386D) for CACNA1F, NYX and TRPM1 respectively. Additionally, significant progression of myopia per year (-0.254D, -0.257D and -0.326D) was observed for all three genotypes CACNA1F, NYX and TRPM1, respectively. CONCLUSIONS: Patients with CSNB tend to be myopic from an early age and progress to become more myopic with age. Patients may benefit from long-term myopia slowing treatment in the future and further studies are indicated. Additionally, CSNB should be considered in the differential diagnosis for early-onset myopia
Recommended from our members
Pathogenic <i>NR2F1</i> variants cause a developmental ocular phenotype recapitulated in a mutant mouse model.
Funder: National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of OphthalmologyPathogenic NR2F1 variants cause a rare autosomal dominant neurodevelopmental disorder referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. Although visual loss is a prominent feature seen in affected individuals, the molecular and cellular mechanisms contributing to visual impairment are still poorly characterized. We conducted a deep phenotyping study on a cohort of 22 individuals carrying pathogenic NR2F1 variants to document the neurodevelopmental and ophthalmological manifestations, in particular the structural and functional changes within the retina and the optic nerve, which have not been detailed previously. The visual impairment became apparent in early childhood with small and/or tilted hypoplastic optic nerves observed in 10 cases. High-resolution optical coherence tomography imaging confirmed significant loss of retinal ganglion cells with thinning of the ganglion cell layer, consistent with electrophysiological evidence of retinal ganglion cells dysfunction. Interestingly, for those individuals with available longitudinal ophthalmological data, there was no significant deterioration in visual function during the period of follow-up. Diffusion tensor imaging tractography studies showed defective connections and disorganization of the extracortical visual pathways. To further investigate how pathogenic NR2F1 variants impact on retinal and optic nerve development, we took advantage of an Nr2f1 mutant mouse disease model. Abnormal retinogenesis in early stages of development was observed in Nr2f1 mutant mice with decreased retinal ganglion cell density and disruption of retinal ganglion cell axonal guidance from the neural retina into the optic stalk, accounting for the development of optic nerve hypoplasia. The mutant mice showed significantly reduced visual acuity based on electrophysiological parameters with marked conduction delay and decreased amplitude of the recordings in the superficial layers of the visual cortex. The clinical observations in our study cohort, supported by the mouse data, suggest an early neurodevelopmental origin for the retinal and optic nerve head defects caused by NR2F1 pathogenic variants, resulting in congenital vision loss that seems to be non-progressive. We propose NR2F1 as a major gene that orchestrates early retinal and optic nerve head development, playing a key role in the maturation of the visual system
Pathogenic NR2F1 variants cause a developmental ocular phenotype recapitulated in a mutant mouse model.
Pathogenic NR2F1 variants cause a rare autosomal dominant neurodevelopmental disorder referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. Although visual loss is a prominent feature seen in affected individuals, the molecular and cellular mechanisms contributing to visual impairment are still poorly characterized. We conducted a deep phenotyping study on a cohort of 22 individuals carrying pathogenic NR2F1 variants to document the neurodevelopmental and ophthalmological manifestations, in particular the structural and functional changes within the retina and the optic nerve, which have not been detailed previously. The visual impairment became apparent in early childhood with small and/or tilted hypoplastic optic nerves observed in 10 cases. High-resolution optical coherence tomography imaging confirmed significant loss of retinal ganglion cells with thinning of the ganglion cell layer, consistent with electrophysiological evidence of retinal ganglion cells dysfunction. Interestingly, for those individuals with available longitudinal ophthalmological data, there was no significant deterioration in visual function during the period of follow-up. Diffusion tensor imaging tractography studies showed defective connections and disorganization of the extracortical visual pathways. To further investigate how pathogenic NR2F1 variants impact on retinal and optic nerve development, we took advantage of an Nr2f1 mutant mouse disease model. Abnormal retinogenesis in early stages of development was observed in Nr2f1 mutant mice with decreased retinal ganglion cell density and disruption of retinal ganglion cell axonal guidance from the neural retina into the optic stalk, accounting for the development of optic nerve hypoplasia. The mutant mice showed significantly reduced visual acuity based on electrophysiological parameters with marked conduction delay and decreased amplitude of the recordings in the superficial layers of the visual cortex. The clinical observations in our study cohort, supported by the mouse data, suggest an early neurodevelopmental origin for the retinal and optic nerve head defects caused by NR2F1 pathogenic variants, resulting in congenital vision loss that seems to be non-progressive. We propose NR2F1 as a major gene that orchestrates early retinal and optic nerve head development, playing a key role in the maturation of the visual system
Decisions, trials, and tribulations of synthesizing and commercializing semiochemicals in the US and internationally
PART I. A BIOGENETIC-TYPE SYNTHESIS OF THE CYCLOHEXYL CONSTITUENTS OF THE BOLL WEEVIL PHEROMONE. PART II. THE THERMOLYSIS OF UNSATURATED DINITRILES, DIESTERS, AND CYANOESTERS. PART III. REACTIONS OF ORGANOBORANES DERIVED FROM MONOTERPENES.
Abstract not availabl
Potential of Natural Products and Their Derivatives to Control Formosan Subterranean Termites (Isoptera: Rhinotermitidae)
Recommended from our members
DEET and other repellents are inhibitors of mosquito odorant receptors for oviposition attractants
In addition to its primary function as an insect repellent, DEET has many "off-label" properties, including a deterrent effect on the attraction of gravid female mosquitoes. DEET negatively affects oviposition sites. While deorphanizing odorant receptors (ORs) using the Xenopus oocyte recording system, we have previously observed that DEET generated outward (inhibitory) currents on ORs sensitive to oviposition attractants. Here, we systematically investigated these inhibitory currents. We recorded dose-dependent outward currents elicited by DEET and other repellents on ORs from Culex quinquefasciatus, Aedes aegypti, and Anopheles gambiae. Similar responses were observed with other plant-derived and plant-inspired compounds, including methyl jasmonate and methyl dihydrojasmolate. Inward (regular) currents elicited by skatole upon activation of CquiOR21 were modulated when this oviposition attractant was coapplied with a repellent. Compounds that generate outward currents in ORs sensitive to oviposition attractants elicited inward currents in a DEET-sensitive receptor, CquiOR136. The best ligand for this receptor, methyl dihydrojasmolate, showed repellency activity but was not as strong as DEET in our test protocol
DEET and other repellents are inhibitors of mosquito odorant receptors for oviposition attractants
Multiple-choice field evaluations of compounds pre-screened by EAG and indoor bioassay.
<p>This first trial was conducted in Arbuckle, CA from May 13th, 2012 through June 9th, 2012. The number of eggs laid on black egg traps baited with compound <b>9</b> was significantly lower than those oviposited on control (hexane) traps (<i>P</i> = 0.003; Dunn's Multiple Comparisons Test). Oviposition in traps baited with compound <b>8</b> was not significantly different (<i>P</i>>0.05) from those on control traps. Lastly, there was no significant difference between the two treatments: compounds <b>8</b> and <b>9</b> (<i>P</i>>0.05; <i>N = 30</i>).</p
