9,700 research outputs found

    NASA-JSC ozone observations for validation of Nimbus 7-LIMS data

    Get PDF
    A series of balloon flights undertaken to validate data received from the limb infrared monitor of the stratorphere instrument aboard the Nimbus 7 satellite is discussed. Ozone data profiles, which included altitude, pressure, and mixing ratio, obtained during both ascent and descent of the balloons are reported. The measurement concept, instrumental uncertainties, and temporal variations observed for several time periods are discussed

    Radiological assessment for Space Station Freedom

    Get PDF
    Circumstances have made it necessary to reassess the risks to Space Station Freedom crewmembers that arise from exposure to the space radiation environment. An option is being considered to place it in an orbit similar to that of the Russian Mir space station. This means it would be in a 51.6 deg inclination orbit instead of the previously planned 28.5 deg inclination orbit. A broad range of altitudes is still being considered, although the baseline is a 407 km orbit. In addition, recent data from the Japanese A-bomb survivors has made it necessary for NASA to have the exposure limits reviewed. Preliminary findings of the National Council on Radiation Protection and Measurements indicate that the limits must be significantly reduced. Finally, the Space Station will be a laboratory where effects of long-term zero gravity on human physiology will be studied in detail. It is possible that a few crewmembers will be assigned to as many as three 1-year missions. Thus, their accumulated exposure will exceed 1,000 days. Results of this radiation risk assessment for Space Station Freedom crewmembers finds that females less than 35 years old will be confined to mission assignments where the altitude is less than about 400 km. Slight restrictions may also need to be made for male crewmembers less than 35 years old

    Decomposition, Condensation Defects, and Fusion

    Get PDF
    In this paper we outline the application of decomposition to condensation defects and their fusion rules. Briefly, a condensation defect is obtained by gauging a higher-form symmetry along a submanifold, and so there is a natural interplay with notions of decomposition, the statement that d-dimensional quantum field theories with global (Formula presented.) -form symmetries are equivalent to disjoint unions of other quantum field theories. We will also construct new (sometimes non-invertible) defects, and compute their fusion products, again utilizing decomposition. An important role will be played in all these analyses by theta angles for gauged higher-form symmetries, which can be used to select individual universes in a decomposition

    367-80 airplane variable stability simulation system /NASA Langley supersonic transport simulation program/

    Get PDF
    Four-engine jet aircraft used as in-flight simulator for variable stability testing of supersonic aircraf

    LIMS Instrument Package (LIP) balloon experiment: Nimbus 7 satellite correlative temperature, ozone, water vapor, and nitric acid measurements

    Get PDF
    The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described

    Book Reviews

    Get PDF

    Quantum dissipation due to the interaction with chaotic degrees-of-freedom and the correspondence principle

    Full text link
    Both in atomic physics and in mesoscopic physics it is sometimes interesting to consider the energy time-dependence of a parametrically-driven chaotic system. We assume an Hamiltonian H(Q,P;x(t)){\cal H}(Q,P;x(t)) where x(t)=Vtx(t)=Vt. The velocity VV is slow in the classical sense but not necessarily in the quantum-mechanical sense. The crossover (in time) from ballistic to diffusive energy-spreading is studied. The associated irreversible growth of the average energy has the meaning of dissipation. It is found that a dimensionless velocity vPRv_{PR} determines the nature of the dynamics, and controls the route towards quantal-classical correspondence (QCC). A perturbative regime and a non-perturbative semiclassical regime are distinguished.Comment: 4 pages, clear presentation of the main poin

    Improving Predictions for Helium Emission Lines

    Get PDF
    We have combined the detailed He I recombination model of Smits with the collisional transitions of Sawey & Berrington in order to produce new accurate helium emissivities that include the effects of collisional excitation from both the 2 (3)S and 2 (1) S levels. We present a grid of emissivities for a range of temperature and densities along with analytical fits and error estimates. Fits accurate to within 1% are given for the emissivities of the brightest lines over a restricted range for estimates of primordial helium abundance. We characterize the analysis uncertainties associated with uncertainties in temperature, density, fitting functions, and input atomic data. We estimate that atomic data uncertainties alone may limit abundance estimates to an accuracy of 1.5%; systematic errors may be greater than this. This analysis uncertainty must be incorporated when attempting to make high accuracy estimates of the helium abundance. For example, in recent determinations of the primordial helium abundance, uncertainties in the input atomic data have been neglected.Comment: ApJ, accepte

    Cognitive Information Processing

    Get PDF
    Contains reports on four research projects.National Institutes of Health (Grant 1 P01 GM-14940-01)National Institutes of Health (Grant 1 PO1 GM-15006-01)Joint Services Electronics Programs (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E
    • …
    corecore