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Abstract

Circumstances have made it necessary to reassess the risk to Space Station
Freedom crew members that arises from exposure to the space radiation
environment. An option is being considered to place it in an orbit similar to that of
the Russian Mir space station. This means it would be in a 51.6° inclination orbit
Instead of the previously planned orbit with a 28.5° inclination. A broad range of
altitudes is still being considered, although the baseline is a 407 km orbit. Recent
data from the Japanese A-bomb survivors have made it necessary for NASA to
review current exposure limits. Preliminary findings of the National Council on
Radiation Protection and Measurements indicate that the limits must be significantly
reduced. Finally, the Space Station will be a laboratory where effects of long-term
zero gravity on human physiology will be studied in detail. It is possible that a
few crew members will be assigned to as many as three 1-year missions. Thus,
their accumulated exposure will exceed 1,000 days. :

Results of this radiation risk assessment for Space Station Freedom crew
members finds that females less than 35 years old will be confined to mission
assignments where the altitude is less than about 400 km. Slight restrictions may

also need to be made for male crew members less than 35 years old.

Introduction

The baseline orbit for Space Station
Freedom (SSF) has a 28.45° inclination and
an initial altitude of 407 km (220 nm). This
orbit will decay at a rate which is controlled
by solar activity. After a decay of
approximately 9 km, the plan is to boost the
space station back to 407 km. Other orbits
with different altitudes and/or inclinations are
also being considered. One consideration is
to place the space station in an orbit that
allows the Space Shuttle to dock with the
Russian Mir space station, which is in an
elliptical orbit with a 51.6" inclination® and at
an altitude ranging from 380 to 420 km,

This paper reports an assessment of risks to
crewmembers arising from exposure to the
space radiation environment. Several
factors have led to the need for such an
assessment. First, there is a real possibility
that SSF will have a significantly different
orbit from the current baseline one. In
addition, preliminary findings of the National
Council on Radiation Protection and
Measurements (NCRP), Scientific Committee
75, indicate that current NASA exposure
limits for low-Earth orbit (LEO) flights must
be reduced. Recent data from Japanese A-
bomb survivors indicate that the risks of
radiation-induced hard tumors are
significantly greater than shown in earlier
data. Then, there is a possibility that flight
assignments of up to a year in duration wili
be made so that SSF crew members can

serve as subjects for research on
physiological effects of long-duration
exposure to microgravity. Some crew
members could be given up to three 1-year
assignments which significantly increases
the etfects of exposure to space radiation.

Assumptions, Inputs, and Data
Pedigree

To assess the radiation risks of SSF crew
members, mass distributions are required for
the four SSF modules: the U.S. habitation
and laboratory modules, the Japanese
module, and the European Space A enc?(
(ESA) module including the spacecratt hull,
micrometeoroid shield, and rack housings for
the electronics and other e%tljipment. In
addition, mass distributions of the four nodes
which interconnect the modules are needed.
Because the equipment to be mounted in the
racks cannot be specified at this time, it is not
included. Body self-shielding is computed
using anatomical models of crew members
and is included in the mass shielding
distribution.  Spatial distributions of the
mass were obtained using a ray-tracing
technique that determines the material
thickness in 512 evenly spaced solid angles
at selected "dose-points."

Circular orbits of SSF are considered with
altitudes between 175 nm (324 km) and 275
nm (509 km) and with inclinations of 28.45°
and 51.6°. [Actually, data from 57° inclination



flights of the Space Shuttle are used to
estimate radiation exposures in a 51.6° orbit
because the measurements made provide
the best estimate of the expected SSF
environment.]

The AP8 proton model (Sawyer and Vette,
1976) was used to describe the trapped-belt
environment at solar minimum and solar
maximum. The AES8 electron model (Teague
and Vette, 1974) was used to estimate
trapped electron exposures at solar
minimum. Neither the proton nor the electron
model allows for intermediate levels of solar
activity, nor do they describe the anisotropic,
gltch-angle distributions of trapped particies.
They provide only omindirectional particle
intensities. The temporal behavior of the
Earth's geomagnetic field was described by
two different models: the 1965 International
Geomagnetic Reference Field, epoch 1964,
(IAGA, 19869) for solar minimum conditions
and the 1970 U.S. Coastal and Geodesic
Survey (USCGS70), epoch 1970,
geomagnetic field model for solar maximum
conditions (ref 1). Magnetospheric condi-
tions were assumed to be “quiet.”

Galactic cosmic ray LGCI?J intensities were
computed using the Naval Research
Laboratory Cosmic Ray Effects on
Microelectronics (CREME) model (Adams et
al., 1986). he 1985 International
Geomagnetic Reference Field, epoch 1990
gAGA, 1985), was used as input to the

REME routine, "Geomag," to compute
particle transmissions to locations within the
geomagnetic field. The calculated values
were normalized to measured values in the
Space Shuttle using Mt. Climax neutron
monitor data.

The biologically significant dose equivalents
were computed at various locations in the
SSF using the program PDOSE that was
developed by the NASA Johnson Space
Center (JSC) (ref 3). The program is based
on proton range-energy and linear energy
transfer SLE tables of Janni (1982).
Trapped electron exposures were computed
using the program EDOSE which was also
developed by NASA JSC. EDOSE uses
data from look-up tables compiled by Berger
and Seltzer (ref 2) using a Monte Carlo
electron-photon
SHIELDOSE. GCR exposures were

transport code

computed using the program, HZETRN,
developed by the NASA Langley Research
Center (Wilson et al., 1991). Calculations of
the dose equivalent are based on the quality
factor versus LET relationship from
International Commission on Radiological
Production (ICRP) (1977) instead of ICRP
(1960). Differences will be discussed.

It is assumed that crew members who are
selected for long-duration missions will not
perform extravehicular activity (EVA) so that
their exposures can be minimized. This
means that only those crew members who
receive 180-day flight assignments will
Eerform the necessary EVA on SSF.

urther, it is assumed that those crew
members selected to participate in long-
duration missions will spend 90 percent of
the time in the laboratory module and 10
percent of the time in an end-node.

Radiation Limits

Table | lists current NASA radiation
exposure limits in units of sievert (Sv),
where 1 Sv = 100 rem., for the blood-forming
or%ans (BFOs) and skin for LEO missions
(NCRP, 1989). A comparison between the
current career BFO limits and those
proposed by the NCRP Scientific Committee
75 are given in Table Il as a function of age
and sex. The proposed BFO limits are more
than a factor of two less than current limits.
Larger risks are indicated for females,
especially those at younger ages. For
example, Froposed career exposure limits for
25-year-old female crew members are about
3.7 times greater than for 55-year-old female
crew members. By comparison, the
proposed career limits for 25-year-old male
crew members is 2.38 times greater than for
55-year-old male crew members. Note that
the limits for skin will always be three times
or more greater than for BFOs. This means
that In cases where the ratio of skin to
BFO exposures Is less than 3, BFOs
will be the critical organ which limits
exposure. Table lll (Charles Land, private
communication) gives National Cancer
Institute data on the excess lifetime risk of
cancer mortality as a function of age and sex.
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Table I. Current NASA Exposure Limits (in Sv) for LEO Missions (NCRP, 1989).

BFO SKIN
30-days 0.25 1.5
Annual 0.50 3.0
Career:
Males 2.040.075 (Age-30 yr) 6.0
Females 12.0+0.07.5 (Age-38 vyr) 6.0

Table ll. Current and Proposed Career BFO Exposure Limits in Sv.

(Age Females Males
ears) Current Proposed Current Proposed
25 1.0 0.4 1.5 0.7
35 1.75 0.9 125 1.1
45 2.5 1.1 3.25 1.5
55 3.0 1.5 4.0 1.9

Table lll. Excess Lifetime Risk of Cancer Mortality (percent/Sv) from Radiation Exposure.

| Age (YD) Females Males
25 8.2 6.1
35 4.0 3.1
45 2.8 2.2
55 2.4 1.9




Assessment Results

Figure 1 shows skin dose equivalent rates
measured at the least shielded location inside
the Space Shuttle for flights with a 28.5°
inclination as a function of altitude and solar
activity. [The F10.7 cm solar radio frequency
intensity is taken as the measureeoq solar
activity.] Computed exposures using the
AP8 trapped proton model for solar minimum
and solar maximum are shown for
comparison. As a rule, the measurements
are bounded by the calculations. Fits to the
measurements are shown for three ranges of
solar activity. For example, dose equivalent
rates at 220 nm (407 km) are between 0.6
and 1.0 mSv/day, depending on solar
activity.

Figure 2 shows skin dose rates (in gray, Gy,
where 1 Gy = 100 rads) measured at two
locations é LOC2 is the least shielded area,
and DLOC1 is more heavily shielded) inside
the Space Shuttle for flights with inclinations

reater than 49.5° as a function of altitude.

he measurements are again bounded by
calculations which used the AP8 trapped
proton model for solar minimum and solar
maximum. Also shown are measurements
made on selected Soviet spaceflights which
are in good agreement with the
measurements made on Space Shuttle
flights. The range of values at a single
altitude is principally due to differences in
solar activity at the times of flights. Dose
rates at 220 nm (407 km) range between
about 0.2 and 0.5 mGy/day. The dose rates
in mGy/day must be multiplied by an
effective quality factor to convert to dose
equivalent rates. The effective quality factor
for the Space Shuttle is about 2.4 at about
150 nm (278 km) and about 1.7 to 1.8 at
about 220 nm 1407 km), depending on solar
activity and inclination. Thus, at 220 nm the
dose equivalent rates range between 0.3
and 0.75 mSv/day.

Figure 3 shows the fractions of the total BFO
dose equivalent exposures contributed by
GCR as a function of altitude for both 28.5
and 57° inclinations. [Exposures will be
similar at 51.6°.] In general, GCR contributes
almost all the radiation exposure at and
below about 280 km. The contribution of
trapped belt protons increases rapidly with
altitude so that they account for more than 90
percent of the total dose equivalent
exposure above about 450 km in a 28.5

inclination orbit and above about 550 km in a
51.6° orbit. At 220 nm (407 km) GCR
accounts for about 20 percent in a 28.5°
inclination orbit and about 30 percent in the
high inclination orbit.

Calculated ionizing radiation exposures to
crew members in the SSF end-nodes and in
the SSF laboratory module are given in
Table IV for orbits with a 28.5° inclination. In
the space environment, the ratio, skin/BFO,
of dose equivalents ranges between about
1.2 and 2.5 and is always less than 3.
Thus, exposures to the BFO will always
be the limiting critical condition In an
orbit with an inclination of 28.5°.

If the new ICRP (1991) quality factor versus
LET relationship had been used instead of
the ICRP (1977) relationship, daily BFO
dose equivalent exposures would be about
2.5 percent greater. If 90 percent of the time
is spent in the module and 10 percent is
spent in the end-node, the maximum
exposure will be 0.30 mSv/day for an
altitude of 400 km.

Calculations using the PDOSE program
obtain effective quality factors which are less
than those obtained by measurements made
on Shuttle flights using the NASA JSC
Tissue Equivalent Prorortional Counter.
More complete calculations using the
BRYNTRN radiation transport code
developed at the NASA Langley Research
Center (Wilson et al., 1989) include
contributions from nuclear reactions which
fragment the atoms of the shielding materials
{Jie ding fragment particles and neutrons.

se of the ICRP (1991) definition of the
guality factor increases estimates of the

ose equivalent by about 20 percent. Thus,
the maximum estimated exposures which
occur at solar minimum are 0.36 mSv/day for
a 400 km altitude.

Table V gives calculated exposures for SSF
crewmembers as a function of altitude in an
orbit with a 51.6"° inclination. These results
show that at low altitudes (below about 250
nm), the radiation exposure is higher than in
a 28.5° inclination orbit. The dominant source
of this increase is the GCR component. At
higher altitudes, exposures at 28.5" are
higher than for higher inclination orbits. The
ratio of skin to BFO dose equivalent rates
ranges between 1.1 and 1.8, and therefore
less than the ratio of exposure limits. Thus,
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Figure 1. Dose equivalent rates measured on Space Shuttle flights with 28.5° inclination orbits.
The solid lines are calculated values of the dose equivalent rates at solar minimum and solar
maximum. The dashed lines are least-squares fits to the measurements for different solar

cycle conditions.
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Figure 3. Fractions of the total BFO dose equivalent rates contributed by GCR. The left figure
applies to orbits with a 28.5° inclination and the right applies to those with a 57° inclination.

Table IV. Calculated dose équlvalent rates for SSF in a 28.5° inclination orbit for solar minimum

conditions.
Dose Equivalent Rate (mSv/day)
325 km 400 km 510 Kkm
Skin | BFO | Skin | BFO | Skin | BFO
End-Nodes 0.31 0.21 | 0.66 | 0.42 | 2.68 1.55
Lab Module 0.20 | 0.16 | 0.40 | 0.29 1.50 1.01

Table V. Calculated dose equivalent rates for SSF in a 51.6° inclination orbit for solar minimum

conditions.
Dose Equivalent Rate (mSv/day)
325 km 400 km 510 km
Skin | BFO | Skin | BFO | Skin ]| BFO
End-Node 047 | 037 | 096 | 0.61 | 2.21 | 1.25
Lab Module 036 | 033 | 0.61 | 0.48 | 1.22 | 0.86




exposures to the BFO are also the
limiting critical condition In a 51.6° orbit.
The BFO dose equivalent in a 400 km, 51.6°
orbit is 0.49 mSv/day if crew members
spend 10 percent of the time in the end-node
and 90 percent of the time in the SSF
laboratory. The probability of a solar particle
event contributing a significant radiation
exposure to crew members in a 28.5°
inclination orbit is negligible. Crew members
inside spacecraft in such low inclination
orbits are highl{{ protected by the Earth's
magnetic field. However, this would not be
the case for EVA in high inclination orbits.

A very large solar particle event occurred on
September 29, 1989, that was responsible
for increasing the mean daily radiation level
inside the Mir space station by a factor of 10
above the nominal background (Lobakov et
al., 1892). The total dose from the groug of
three large solar particle events which
occurred during September-October 1989,
was among the highest ever recorded for a
similar period of time. During this event, the
Mir space station was in an elliptical orbit at
altitudes between 380 and 420 km and an
inclination of 51.6°. Therefore, the
measurements may be considered a
reasonable limit for a 51.6° orbit. The
cumulative dose measured by the Russians
from the group was about 0.036 Gy
(Benghin et al., 1992).

Radiation Risk for Long-Duration
SSF Mission Assignments

Risk to crew members from LEO exposures
to space radiation strongly depend on
altitude and inclination as well as duration of
exposure. Figures 4 and 5 show the
computed risk for males and females,
respectively, as a function of altitude for
1,000-day assignments in 28.5° and 51.6°
inclination orbits assuming that crew
members spend 90 percent of the time in the
laboratory module and 10 percent of the time
in an end-node. The level of risk considered
to be acce?tabla (NCRP, 1989), 3 percent,
is indicated. Risk exceeds 3 percent for 25-
year-old male crew members only above
400 km in the 51.6° orbit and above 450 km
in the 28.5° orbit. Risk exceeds 3 percent for

25-year-old female crew members above
350 km in a 51.6° orbit and above 420 km in
a 28.5° orbit. In addition, the risk to 35-year-
old female crew members exceeds 3 percent
for either inclination above about 480 km.
[Risk for ages between those given must be
obtained by extrapolation from these data.
For example, the risk for a 30-year-old female
will exceed 3 percent for altitudes above
about 400 km.)

Constraints for SSF crew member
assignments were determined using data
based on continuous exposure. Since the
actual assignments will be for multiple
mission assignments, exposures will be
fractionated rather than continuous. Thus, a
period of healing between intermittent
exposures is possible. However, studies
on fractionated exposures using animals
indicate that, for some high-LET radiation, the
radiation risks are increased if the dose is
delivered in separate intervals. Thus, it is
possible that career exposure limits might
need to be reduced even further in such
e?osure scenarios. Finally, other long-term
effects, such as effects on the central
nervous system, which have not yet been
adequately examined are not considered in
this assessment.

Conclusions

A detailed study has been performed on the
risk from radiation exposures of crew
members on SSF assignments up to
approximately 3 years. Orbits ranging from
325 km to 510 km and inclinations of 28.5°
and 51.6° were considered. Constraints
were identified for crew members as a
function of altitude, age, and sex when the
risk is glgeater than the 3 percent acceptable
level. The principal constraint is governed
by the age of the crew member. Twenty-
five year-olds of either sex are constrained in
the altitude range of SSF to which they can
be assigned a mission. However, males
above 35 years old will not be constrained.
Thirty-five-year-old females are only
constrained to orbits with altitudes less than
about 480 km.
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Results of this radiation risk assessment for Space Station Freedom crewmembers finds
that females less than 35 years old will be confined to mission assignments where the
altitude is less than about 400 km. Slight restrictions may also need to be made for
male crewmembers less than 35 years old.
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