12 research outputs found

    Delay and Impairment in Brain Development and Function in Rat Offspring After Maternal Exposure to Methylmercury

    Get PDF
    Maternal exposure to the neurotoxin methylmercury (MeHg) has been shown to have adverse effects on neural development of the offspring in man. Little is known about the underlying mechanisms by which MeHg affects the developing brain. To explore the neurodevelopmental defects and the underlying mechanism associated with MeHg exposure, the cerebellum and cerebrum of Wistar rat pups were analyzed by [F-18]FDG PET functional imaging, field potential analysis, and microarray gene expression profiling. Female rat pups were exposed to MeHg via maternal diet during intrauterinal and lactational period (from gestational day 6 to postnatal day (PND)10), and their brain tissues were sampled for the analysis at weaning (PND18-21) and adulthood (PND61-70). The [F-18]FDG PET imaging and field potential analysis suggested a delay in brain activity and impaired neural function by MeHg. Genome-wide transcriptome analysis substantiated these findings by showing (1) a delay in the onset of gene expression related to neural development, and (2) alterations in pathways related to both structural and functional aspects of nervous system development. The latter included changes in gene expression of developmental regulators, developmental phase associated genes, small GTPase signaling molecules, and representatives of all processes required for synaptic transmission. These findings were observed at dose levels at which only marginal changes in conventional developmental toxicity endpoints were detected. Therefore, the approaches applied in this study are promising in terms of yielding increased sensitivity compared with classical developmental toxicity tests

    Quercetin, but not its glycosidated conjugate rutin, inhibits azoxymethane-induced colorectal carcinogenesis in F344 rats

    No full text
    The effect of the flavonoid quercetin and its conjugate rutin was investigated on (biomarkers of) colorectal cancer (CRC). Male F344 rats (n = 42/group) were fed 0, 0.1, 1, or 10 g quercetin/kg diet or 40 g rutin/kg diet. Two wk after initial administration of experimental diets, rats were given 2 weekly subcutaneous injections with 15 mg/kg body wt azoxymethane (AOM). At wk 38 post-AOM, quercetin dose dependently (P <0.05) decreased the tumor incidence, multiplicity, and size, whereas tumor incidences were comparable in control (50%) and rutin (45%) groups. The number of aberrant crypt foci (ACF) in unsectioned colons at wk 8 did not correlate with the tumor incidence at wk 38. Moreover, at wk 8 post-AOM, the number and multiplicity of ACF with or without accumulation of beta-catenin were not affected by the 10 g quercetin/kg diet. In contrast, another class of CRC-biomarkers, beta-catenin accumulated crypts, contained less beta-catenin than in controls (P <0.05). After enzymatic deconjugation, the plasma concentration of 3'-O-methyl-quercetin and quercetin at wk 8 was inversely correlated with the tumor incidence at wk 38 (r = -0.95, P </= 0.05). Rats supplemented with 40 g rutin/kg diet had only 30% of the (3'-O-methyl-) quercetin concentration of 10 g quercetin/kg diet-fed rats (P <0.001). In conclusion, quercetin, but not rutin, at a high dose reduced colorectal carcinogenesis in AOM-treated rats, which was not reflected by changes in ACF-parameters. The lack of protection by rutin is probably due to its low bioavailabilit

    'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans

    No full text
    Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome human miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2 g dose) and oxidative stress responses (4 g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites

    Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    Get PDF
    Contains fulltext : 125714.pdf (publisher's version ) (Open Access)BACKGROUND: Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. METHODS: We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values < 0.05) of the next-gen TM-derived gene sets and the CTD-derived gene sets in gene expression (GE) data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals. RESULTS: Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. CONCLUSIONS: Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect

    The carcinoGENOMICS project:critical selection of model compounds for the development of omics-based in vitro carcinogenicity screening assays

    No full text
    Recent changes in the European legislation of chemical-related substances have forced the scientific community to speed up the search for alternative methods that could partly or fully replace animal experimentation. The Sixth Framework Program project carcinoGENOMICS was specifically raised to develop omics-based in vitro screens for testing the carcinogenic potential of chemical compounds in a pan-European context. This paper provides an in-depth analysis of the complexity of choosing suitable reference compounds used for creating and fine-tuning the in vitro carcinogenicity assays. First, a number of solid criteria for the selection of the model compounds are defined. Secondly, the strategy followed, including resources consulted, is described and the selected compounds are briefly illustrated. Finally, limitations and problems encountered during the selection procedure are discussed. Since selecting an appropriate set of chemicals is a frequent impediment in the early stages of similar research projects, the information provided in this paper might be extremely valuable

    Toxicogenomics directory of chemically exposed human hepatocytes

    No full text
    A long-term goal of numerous research projects is to identify biomarkers for in vitro systems predicting toxicity in vivo. Often, transcriptomics data are used to identify candidates for further evaluation. However, a systematic directory summarizing key features of chemically influenced genes in human hepatocytes is not yet available. To bridge this gap, we used the Open TG-GATES database with Affymetrix files of cultivated human hepatocytes incubated with chemicals, further sets of gene array data with hepatocytes from human donors generated in this study, and publicly available genome-wide datasets of human liver tissue from patients with non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular cancer (HCC). After a curation procedure, expression data of 143 chemicals were included into a comprehensive biostatistical analysis. The results are summarized in the publicly available toxicotranscriptomics directory (http://wiki.toxbank.net/toxicogenomics-map/) which provides information for all genes whether they are up- or downregulated by chemicals and, if yes, by which compounds. The directory also informs about the following key features of chemically influenced genes: (1) Stereotypical stress response. When chemicals induce strong expression alterations, this usually includes a complex but highly reproducible pattern named 'stereotypical response.' On the other hand, more specific expression responses exist that are induced only by individual compounds or small numbers of compounds. The directory differentiates if the gene is part of the stereotypical stress response or if it represents a more specific reaction. (2) Liver disease-associated genes. Approximately 20 % of the genes influenced by chemicals are up- or downregulated, also in liver disease. Liver disease genes deregulated in cirrhosis, HCC, and NASH that overlap with genes of the aforementioned stereotypical chemical stress response include CYP3A7, normally expressed in fetal liver; the phase II metabolizing enzyme SULT1C2; ALDH8A1, known to generate the ligand of RXR, one of the master regulators of gene expression in the liver; and several genes involved in normal liver functions: CPS1, PCK1, SLC2A2, CYP8B1, CYP4A11, ABCA8, and ADH4. (3) Unstable baseline genes. The process of isolating and the cultivation of hepatocytes was sufficient to induce some stress leading to alterations in the expression of genes, the so-called unstable baseline genes. (4) Biological function. Although more than 2,000 genes are transcriptionally influenced by chemicals, they can be assigned to a relatively small group of biological functions, including energy and lipid metabolism, inflammation and immune response, protein modification, endogenous and xenobiotic metabolism, cytoskeletal organization, stress response, and DNA repair. In conclusion, the introduced toxicotranscriptomics directory offers a basis for a rationale choice of candidate genes for biomarker evaluation studies and represents an easy to use source of background information on chemically influenced genes
    corecore