23 research outputs found

    ć­ŠäŒšæŠ„éŒČ

    Get PDF
    <p><b>Pod-IVR Pharmacokinetics in macaques</b> (A) <i>In vivo</i> release of TDF and FTC from each pod-IVR (N = 6/time point) over the course of the efficacy study determined by residual drug measurements from the pod-IVRs that were in place for 19 weeks with IVRs exchanged for new devices every 2 weeks. The top and bottom of the boxes show the 75th and 25th percentiles, respectively, and the line in the middle of the box is the median value. The dotted lines show the mean (N = 6) <i>in vivo</i> release from identical pod-IVRs obtained during the PK study preceding this efficacy study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0157061#pone.0157061.ref026" target="_blank">26</a>]. (B) <i>In vivo</i> release profile for individual macaques (T1-T6) shows variability between animals. (C) TDF, TFV, TDF+TFV, and FTC levels in vaginal fluids collected at each ring exchange. Vaginal fluids were collected with Weck-Cel sponges proximal and distal to the pod-IVR placement. The dotted horizontal lines correspond to the medians from our previous PK study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0157061#pone.0157061.ref026" target="_blank">26</a>]. Left panels-proximal; Right panels-distal; Dots-median.</p

    Contribution of neuroblastoma-derived exosomes to the production of pro-tumorigenic signals by bone marrow mesenchymal stromal cells

    No full text
    International audienceThe bone marrow (BM) niche is a microenvironment promoting survival, dormancy and therapeutic resistance in tumor cells. Central to this function are mesenchymal stromal cells (MSCs). Here, using neuroblastoma (NB) as a model, we demonstrate that NB cells release an extracellular vesicle (EVs) whose protein cargo is enriched in exosomal proteins but lacks cytokines and chemokines. Using three different purification methods, we then demonstrate that NB-derived exosomes were captured by MSCs and induced the production of pro-tumorigenic cytokines and chemokines, including interleukin-6 (IL-6), IL-8/CXCL8, vascular endothelial cell growth factor and monocyte-chemotactic protein-1, with exosomes prepared by size exclusion chromatography having the highest activity. We found no correlation between the IL-6 and IL-8/CXCL8 stimulatory activity of exosomes from eight NB cell lines and their origin, degree of MYCN amplification, drug resistance and disease status. We then demonstrate that the uptake of NB exosomes by MSCs was associated with a rapid increase in ERK1/2 and AKT activation, and that blocking ERK1/2 but not AKT activation inhibited the IL-6 and IL-8/CXCL8 production by MSCs without affecting exosome uptake. Thus, we describe a new mechanism by which NB cells induce in MSCs an inflammatory reaction that contributes to a favorable microenvir-onment in the BM

    Olive- and Coconut-Oil-Enriched Diets Decreased Secondary Bile Acids and Regulated Metabolic and Transcriptomic Markers of Brain Injury in the Frontal Cortexes of NAFLD Pigs

    No full text
    The objective of this study was to investigate the effect of dietary fatty acid (FA) saturation and carbon chain length on brain bile acid (BA) metabolism and neuronal number in a pig model of pediatric NAFLD. Thirty 20-day-old Iberian pigs, pair-housed in pens, were randomly assigned to receive one of three hypercaloric diets for 10 weeks: (1) lard-enriched (LAR; n = 5 pens), (2) olive-oil-enriched (OLI, n = 5), and (3) coconut-oil-enriched (COC; n = 5). Pig behavior and activity were analyzed throughout the study. All animals were euthanized on week 10 and frontal cortex (FC) samples were collected for immunohistochemistry, metabolomic, and transcriptomic analyses. Data were analyzed by multivariate and univariate statistics. No differences were observed in relative brain weight, neuronal number, or cognitive functioning between diets. Pig activity and FC levels of neuroprotective secondary BAs and betaine decreased in the COC and OLI groups compared with LAR, and paralleled the severity of NAFLD. In addition, OLI-fed pigs showed downregulation of genes involved in neurotransmission, synaptic transmission, and nervous tissue development. Similarly, COC-fed pigs showed upregulation of neurogenesis and myelin repair genes, which caused the accumulation of medium-chain acylcarnitines in brain tissue. In conclusion, our results indicate that secondary BA levels in the FCs of NAFLD pigs are affected by dietary FA composition and are associated with metabolic and transcriptomic markers of brain injury. Dietary interventions that aim to replace saturated FAs by medium-chain or monounsaturated FAs in high-fat hypercaloric diets may have a negative effect on brain health in NAFLD patients

    High-Fructose, High-Fat Diet Alters Muscle Composition and Fuel Utilization in a Juvenile Iberian Pig Model of Non-Alcoholic Fatty Liver Disease

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is a serious metabolic condition affecting millions of people worldwide. A “Western-style diet” has been shown to induce pediatric NAFLD with the potential disruption of skeletal muscle composition and metabolism. To determine the in vivo effect of a “Western-style diet” on pediatric skeletal muscle fiber type and fuel utilization, 28 juvenile Iberian pigs were fed either a control diet (CON) or a high-fructose, high-fat diet (HFF), with or without probiotic supplementation, for 10 weeks. The HFF diets increased the total triacylglycerol content of muscle tissue but decreased intramyocellular lipid (IMCL) content and the number of type I (slow oxidative) muscle fibers. HFF diets induced autophagy as assessed by LC3I and LC3II, and inflammation, as assessed by IL-1α. No differences in body composition were observed, and there was no change in insulin sensitivity, but HFF diets increased several plasma acylcarnitines and decreased expression of lipid oxidation regulators PGC1α and CPT1, suggesting disruption of skeletal muscle metabolism. Our results show that an HFF diet fed to juvenile Iberian pigs produces a less oxidative skeletal muscle phenotype, similar to a detraining effect, and reduces the capacity to use lipid as fuel, even in the absence of insulin resistance and obesity

    Novel multipurpose pod-intravaginal ring for the prevention of HIV, HSV, and unintended pregnancy: Pharmacokinetic evaluation in a macaque model

    No full text
    <div><p>Globally, women bear an uneven burden for sexual HIV acquisition. Results from two clinical trials evaluating intravaginal rings (IVRs) delivering the antiretroviral agent dapivirine have shown that protection from HIV infection can be achieved with this modality, but high adherence is essential. Multipurpose prevention technologies (MPTs) can potentially increase product adherence by offering protection against multiple vaginally transmitted infections and unintended pregnancy. Here we describe a coitally independent, long-acting pod-IVR MPT that could potentially prevent HIV and HSV infection as well as unintended pregnancy. The pharmacokinetics of MPT pod-IVRs delivering tenofovir alafenamide hemifumarate (TAF<sub>2</sub>) to prevent HIV, acyclovir (ACV) to prevent HSV, and etonogestrel (ENG) in combination with ethinyl estradiol (EE), FDA-approved hormonal contraceptives, were evaluated in pigtailed macaques (<i>N</i> = 6) over 35 days. Pod IVRs were exchanged at 14 days with the only modification being lower ENG release rates in the second IVR. Plasma progesterone was monitored weekly to determine the effect of ENG/EE on menstrual cycle. The mean <i>in vivo</i> release rates (mg d<sup>-1</sup>) for the two formulations over 30 days ranged as follows: TAF<sub>2</sub> 0.35–0.40; ACV 0.56–0.70; EE 0.03–0.08; ENG (high releasing) 0.63; and ENG (low releasing) 0.05. Mean peak progesterone levels were 4.4 ± 1.8 ng mL<sup>-1</sup> prior to IVR insertion and 0.075 ± 0.064 ng mL<sup>-1</sup> for 5 weeks after insertion, suggesting that systemic EE/ENG levels were sufficient to suppress menstruation. The TAF<sub>2</sub> and ACV release rates and resulting vaginal tissue drug concentrations (medians: TFV, 2.4 ng mg<sup>-1</sup>; ACV, 0.2 ng mg<sup>-1</sup>) may be sufficient to protect against HIV and HSV infection, respectively. This proof of principle study demonstrates that MPT-pod IVRs could serve as a potent biomedical prevention tool to protect women’s sexual and reproductive health and may increase adherence to HIV PrEP even among younger high-risk populations.</p></div

    Safety and pharmacokinetics of single, dual, and triple antiretroviral drug formulations delivered by pod-intravaginal rings designed for HIV-1 prevention: A Phase I trial.

    No full text
    BACKGROUND:Intravaginal rings (IVRs) for HIV pre-exposure prophylaxis (PrEP) theoretically overcome some adherence concerns associated with frequent dosing that can occur with oral or vaginal film/gel regimens. An innovative pod-IVR, composed of an elastomer scaffold that can hold up to 10 polymer-coated drug cores (or "pods"), is distinct from other IVR designs as drug release from each pod can be controlled independently. A pod-IVR has been developed for the delivery of tenofovir (TFV) disoproxil fumarate (TDF) in combination with emtricitabine (FTC), as daily oral TDF-FTC is the only Food and Drug Administration (FDA)-approved regimen for HIV PrEP. A triple combination IVR building on this platform and delivering TDF-FTC along with the antiretroviral (ARV) agent maraviroc (MVC) also is under development. METHODOLOGY AND FINDINGS:This pilot Phase I trial conducted between June 23, 2015, and July 15, 2016, evaluated the safety, pharmacokinetics (PKs), and acceptability of pod-IVRs delivering 3 different ARV regimens: 1) TDF only, 2) TDF-FTC, and 3) TDF-FTC-MVC over 7 d. The crossover, open-label portion of the trial (N = 6) consisted of 7 d of continuous TDF pod-IVR use, a wash-out phase, and 7 d of continuous TDF-FTC pod-IVR use. After a 3-mo pause to evaluate safety and PK of the TDF and TDF-FTC pod-IVRs, TDF-FTC-MVC pod-IVRs (N = 6) were evaluated over 7 d of continuous use. Safety was assessed by adverse events (AEs), colposcopy, and culture-independent analysis of the vaginal microbiome (VMB). Drug and drug metabolite concentrations in plasma, cervicovaginal fluids (CVFs), cervicovaginal lavages (CVLs), and vaginal tissue (VT) biopsies were determined via liquid chromatographic-tandem mass spectrometry (LC-MS/MS). Perceptibility and acceptability were assessed by surveys and interviews. Median participant age was as follows: TDF/TDF-FTC group, 26 y (range 24-35 y), 2 White, 2 Hispanic, and 2 African American; TDF-FTC-MVC group, 24.5 y (range 21-41 y), 3 White, 1 Hispanic, and 2 African American. Reported acceptability was high for all 3 products, and pod-IVR use was confirmed by residual drug levels in used IVRs. There were no serious adverse events (SAEs) during the study. There were 26 AEs reported during TDF/TDF-FTC IVR use (itching, discharge, discomfort), with no differences between TDF alone or in combination with FTC observed. In the TDF-FTC-MVC IVR group, there were 12 AEs (itching, discharge, discomfort) during IVR use regardless of attribution to study product. No epithelial disruption/thinning was seen by colposcopy, and no systematic VMB shifts were observed. Median (IQR) tenofovir diphosphate (TFV-DP) tissue concentrations of 303 (277-938) fmol/10(6) cells (TDF), 289 (110-603) fmol/10(6) cells (TDF-FTC), and 302 (177.1-823.8) fmol/10(6) cells (TDF-FTC-MVC) were sustained for 7 d, exceeding theoretical target concentrations for vaginal HIV prevention. The study's main limitations include the small sample size, short duration (7 d versus 28 d), and the lack of FTC triphosphate measurements in VT biopsies. CONCLUSIONS:An innovative pod-IVR delivery device with 3 different formulations delivering different regimens of ARV drugs vaginally appeared to be safe and acceptable and provided drug concentrations in CVFs and tissues exceeding concentrations achieved by highly protective oral dosing, suggesting that efficacy for vaginal HIV PrEP is achievable. These results show that an alternate, more adherence-independent, longer-acting prevention device based on the only FDA-approved PrEP combination regimen can be advanced to safety and efficacy testing. TRIAL REGISTRATION:ClinicalTrials.gov NCT02431273
    corecore