4,148 research outputs found

    Charge dependence of neoclassical and turbulent transport of light impurities on MAST

    Get PDF
    Carbon and nitrogen impurity transport coefficients are determined from gas puff experiments carried out during repeat L-mode discharges on the Mega-Amp Spherical Tokamak (MAST) and compared against a previous analysis of helium impurity transport on MAST. The impurity density profiles are measured on the low-field side of the plasma, therefore this paper focuses on light impurities where the impact of poloidal asymmetries on impurity transport is predicted to be negligible. A weak screening of carbon and nitrogen is found in the plasma core, whereas the helium density profile is peaked over the entire plasma radius.Comment: 17 pages, 7 figure

    The Relationships between Human Fatigue and Public Health: A Brief Commentary on Selected Papers from the 9th International Conference on Managing Fatigue in Transportation, Resources and Health

    Get PDF
    The 9th International Conference on Managing Fatigue in Transportation, Resources and Health was held in Fremantle, Western Australia in March 2015. The purpose of the conferences in this series is to provide a forum for industry representatives, regulators, and scientists to discuss recent advances in the field of fatigue research. We have produced a Special Issue of the International Journal of Environmental Research and Public Health based on papers from the conference that were focused on various aspects of public health. First, the Special Issue highlights the fact that working long shifts and/or night shifts can affect not only cognitive functioning, but also physical health. In particular, three papers examined the potential relationships between shiftwork and different aspects of health, including the cardiovascular system, sleep disordered breathing, and eating behaviour. Second, the Special Issue highlights the move away from controlling fatigue through prescriptive hours of service rules and toward the application of risk management principles. In particular, three papers indicated that best-practice fatigue risk management systems should contain multiple redundant layers of defense against fatigue-related errors and accidents

    High-throughput single cell arrays as a novel tool in biopreservation

    Get PDF
    Microwell array cytometry is a novel high-throughput experimental technique that makes it possible to correlate pre-stress cell phenotypes and post-stress outcomes with single cell resolution. Because the cells are seeded in a high density grid of cell-sized microwells, thousands of individual cells can be tracked and imaged through manipulations as extreme as freezing or drying. Unlike flow cytometry, measurements can be made at multiple time points for the same set of cells. Unlike conventional image cytometry, image analysis is greatly simplified by arranging the cells in a spatially defined pattern and physically separating them from one another. To demonstrate the utility of microwell array cytometry in the field of biopreservation, we have used it to investigate the role of mitochondrial membrane potential in the cryopreservation of primary hepatocytes. Even with optimized cryopreservation protocols, the stress of freezing almost always leads to dysfunction or death in part of the cell population. To a large extent, cell fate is dominated by the stochastic nature of ice crystal nucleation, membrane rupture, and other biophysical processes, but natural variation in the initial cell population almost certainly plays an important and under-studied role. Understanding why some cells in a population are more likely to survive preservation will be invaluable for the development of new approaches to improve preservation yields. For this paper, primary hepatocytes were seeded in microwell array devices, imaged using the mitochondrial dyes Rh123 or JC-1, cryopreserved for up to a week, rapidly thawed, and checked for viability after a short recovery period. Cells with a high mitochondrial membrane potential before freezing were significantly less likely to survive the freezing process, though the difference in short term viability was fairly small. The results demonstrate that intrinsic cell factors do play an important role in cryopreservation survival, even in the short term where extrinsic biophysical factors would be expected to dominate. We believe that microwell array cytometry will be an important tool for a wide range of studies in biopreservation and stress biology. © 2009 Elsevier Inc. All rights reserved

    Composition, Morphology, and Stratigraphy of Noachian Crust around the Isidis basin

    Get PDF
    Definitive exposures of pristine, ancient crust on Mars are rare, and the finding that much of the ancient Noachian terrain on Mars exhibits evidence of phyllosilicate alteration adds further complexity. We have analyzed high-resolution data from the Mars Reconnaissance Orbiter in the well-exposed Noachian crust surrounding the Isidis basin. We focus on data from the Compact Reconnaissance Imaging Spectrometer for Mars as well as imaging data sets from High Resolution Imagine Science Experiment and Context Imager. These data show the lowermost unit of Noachian crust in this region is a complex, brecciated unit of diverse compositions. Breccia blocks consisting of unaltered mafic rocks together with rocks showing signatures of Fe/Mg-phyllosilicates are commonly observed. In regions of good exposure, layered or banded phyllosilicate-bearing breccia rocks are observed suggestive of pre-Isidis sedimentary deposits. In places, the phyllosilicate-bearing material appears as a matrix surrounding mafic blocks, and the mafic rocks show evidence of complex folded relationships possibly formed in the turbulent flow during emplacement of basin-scale ejecta. These materials likely include both pre-Isidis basement rocks as well as the brecciated products of the Isidis basin–forming event at 3.9 Ga. A banded olivine unit capped by a mafic unit covers a large topographic and geographic range from northwest of Nili Fossae to the southern edge of the Isidis basin. This olivine-mafic cap combination superimposes the phyllosilicate-bearing basement rocks and distinctly conforms to the underlying basement topography. This may be due to draping of the topography by a fluid or tectonic deformation of a previously flatter lying morphology. We interpret the draping, superposed olivine-mafic cap combination to be impact melt from the Isidis basin–forming event. While some distinct post-Isidis alteration is evident (carbonate, kaolinite, and serpentine), the persistence of olivine from the time of Isidis basin suggests that large-scale aqueous alteration processes had ceased by the time this unit was emplaced

    Suppression of turbulence and subcritical fluctuations in differentially rotating gyrokinetic plasmas

    Full text link
    Differential rotation is known to suppress linear instabilities in fusion plasmas. However, even in the absence of growing eigenmodes, subcritical fluctuations that grow transiently can lead to sustained turbulence. Here transient growth of electrostatic fluctuations driven by the parallel velocity gradient (PVG) and the ion temperature gradient (ITG) in the presence of a perpendicular ExB velocity shear is considered. The maximally simplified case of zero magnetic shear is treated in the framework of a local shearing box. There are no linearly growing eigenmodes, so all excitations are transient. The maximal amplification factor of initial perturbations and the corresponding wavenumbers are calculated as functions of q/\epsilon (=safety factor/aspect ratio), temperature gradient and velocity shear. Analytical results are corroborated and supplemented by linear gyrokinetic numerical tests. For sufficiently low values of q/\epsilon (<7 in our model), regimes with fully suppressed ion-scale turbulence are possible. For cases when turbulence is not suppressed, an elementary heuristic theory of subcritical PVG turbulence leading to a scaling of the associated ion heat flux with q, \epsilon, velocity shear and temperature gradient is proposed; it is argued that the transport is much less stiff than in the ITG regime.Comment: 36 pages in IOP latex style; 12 figures; submitted to PPC

    Sea-ice production and air/ice/ocean/biogeochemistry interactions in the Ross Sea during the PIPERS 2017 autumn field campaign

    Get PDF
    The Ross Sea is known for showing the greatest sea-ice increase, as observed globally, particularly from 1979 to 2015. However, corresponding changes in sea-ice thickness and production in the Ross Sea are not known, nor how these changes have impacted water masses, carbon fluxes, biogeochemical processes and availability of micronutrients. The PIPERS project sought to address these questions during an autumn ship campaign in 2017 and two spring airborne campaigns in 2016 and 2017. PIPERS used a multidisciplinary approach of manned and autonomous platforms to study the coupled air/ice/ocean/biogeochemical interactions during autumn and related those to spring conditions. Unexpectedly, the Ross Sea experienced record low sea ice in spring 2016 and autumn 2017. The delayed ice advance in 2017 contributed to (1) increased ice production and export in coastal polynyas, (2) thinner snow and ice cover in the central pack, (3) lower sea-ice Chl-a burdens and differences in sympagic communities, (4) sustained ocean heat flux delaying ice thickening and (5) a melting, anomalously southward ice edge persisting into winter. Despite these impacts, airborne observations in spring 2017 suggest that winter ice production over the continental shelf was likely not anomalous
    corecore