7 research outputs found
RASSF1A-Mediated Suppression of Estrogen Receptor Alpha (ERα)-Driven Breast Cancer Cell Growth Depends on the Hippo-Kinases LATS1 and 2
Around 70% of breast cancers express the estrogen receptor alpha (ERα). This receptor is of central importance for breast cancer development and estrogen-dependent tumor growth. However, the molecular mechanisms that are responsible for the control of ERα expression and function in the context of breast carcinogenesis are complex and not fully understood. In previous work, we have demonstrated that the tumor suppressor RASSF1A suppresses estrogen-dependent growth of breast cancer cells through a complex network that keeps ERα expression and function under control. We observed that RASSF1A mediates the suppression of ERα expression through modulation of the Hippo effector Yes-associated protein 1 (YAP1) activity. Here we report that RASSF1A-mediated alteration of YAP1 depends on the Hippo-kinases LATS1 and LATS2. Based on these results, we conclude that inactivation of RASSF1A causes changes in the function of the Hippo signaling pathway and altered activation of YAP1, and as a consequence, increased expression and function of ERα. Thus, the inactivation of RASSF1A might constitute a fundamental event that supports the initiation of ERα-dependent breast cancer. Furthermore, our results support the notion that the Hippo pathway is important for the suppression of luminal breast cancers, and that the tumor-suppressor function of RASSF1A depends on LATS1 and LATS2
RASSF1A Suppresses Estrogen-Dependent Breast Cancer Cell Growth through Inhibition of the Yes-Associated Protein 1 (YAP1), Inhibition of the Forkhead Box Protein M1 (FOXM1), and Activation of Forkhead Box Transcription Factor 3A (FOXO3A)
The estrogen receptor alpha (ERα) is expressed by the majority of breast cancers and plays an important role in breast cancer development and tumor outgrowth. Although ERα is well known to be a specific and efficient therapeutic target, the molecular mechanisms that are responsible for the control of ERα expression and function in the context of breast cancer initiation and progression are complex and not completely elucidated. In previous work, we have demonstrated that the tumor suppressor RASSF1A inhibits ERα expression and function in ERα-positive breast cancer cells through an AKT-dependent mechanism. Transcriptional activators such as forkhead box protein M1 (FOXM1) and forkhead transcription factor 3A (FOXO3A) and signaling pathways such as the Hippo pathway are also known to modulate ERα expression and activity. Here we report that RASSF1A acts as an inhibitor of ERα-driven breast cancer cell growth through a complex, hierarchically organized network that initially involves suppression of the Hippo effector Yes-associated protein 1 (YAP1), which is followed by inhibition of AKT1 activity, increased FOXO3A activity as well as a blockade of FOXM1 and ERα expression. Together our findings provide important new mechanistic insights into how the loss of RASSF1A contributes to ERα+ breast cancer initiation and progression
Functional characterization of circulating tumor cells (CTCs) from metastatic ER+/HER2− breast cancer reveals dependence on HER2 and FOXM1 for endocrine therapy resistance and tumor cell survival: Implications for treatment of ER+/HER2− breast cancer
Mechanisms of acquired endocrine resistance and late recurrence in patients with ER+/HER2− breast cancer are complex and not fully understood. Here, we evaluated mechanisms of acquired resistance in circulating tumor cells (CTCs) from an ER+/HER2− breast cancer patient who initially responded but later progressed under endocrine treatment. We found a switch from ERα-dependent to HER2-dependent and ERα-independent expression of FOXM1, which may enable disseminated ER+/HER2− cells to re-initiate tumor cell growth and metastasis formation in the presence of endocrine treatment. Our results also suggest a role for HER2 in resistance, even in ER+ breast cancer cells that have neither HER2 amplification nor activating HER2 mutations. We found that NFkB signaling sustains HER2 and FOXM1 expression in CTCs in the presence of ERα inhibitors. Inhibition of NFkB signaling blocked expression of HER2 and FOXM1 in the CTCs, and induced apoptosis. Thus, targeting of NFkB and FOXM1 might be an efficient therapeutic approach to prevent late recurrence and to treat endocrine resistance. Collectively our data show that CTCs from patients with endocrine resistance allow mechanisms of acquired endocrine resistance to be delineated, and can be used to test potential drug regimens for combatting resistance
The LIM domain protein nTRIP6 acts as a co-repressor for the transcription factor MEF2C in myoblasts
The transcription factor Myocyte enhancer factor 2C (MEF2C) plays a key role in the late differentiation of skeletal muscle progenitor cells, the so-called myoblasts. During myoblast differentiation, both MEF2C expression and transcriptional activity are regulated. We have reported that nTRIP6, the nuclear isoform of the focal adhesion LIM domain protein TRIP6, acts as an adaptor transcriptional co-activator for several transcription factors. It interacts with the promoter-bound transcription factors and consequently mediates the recruitment of other co-activators. Based on a described interaction between MEF2C and TRIP6 in a yeast-two-hybrid screen, we hypothesised a co-regulatory function of nTRIP6 for MEF2C. In proliferating myoblasts, nTRIP6 interacted with MEF2C and was recruited together with MEF2C to the MEF2-binding regions of the MEF2C target genes Myom2, Mb, Tnni2 and Des. Silencing nTRIP6 or preventing its interaction with MEF2C increased MEF2C transcriptional activity and increased the expression of these MEF2C target genes. Thus, nTRIP6 acts as a co-repressor for MEF2C. Mechanistically, nTRIP6 mediated the recruitment of the class IIa histone deacetylase HDAC5 to the MEF2C-bound promoters. In conclusion, our results unravel a transcriptional co-repressor function for nTRIP6. This adaptor co-regulator can thus exert either co-activator or co-repressor functions, depending on the transcription factor it interacts with
Proteasome inhibitors prevent bi-directional HER2/estrogen-receptor cross-talk leading to cell death in endocrine and lapatinib-resistant HER2+/ER+ breast cancer cells
Amplification and/or overexpression of the human epidermal growth factor 2 (HER2) oncogene occurs in about 13–15% of invasive breast cancer and triggers breast cancer cell proliferation, survival and metastatic progression. Around half of all breast cancers with HER2 overexpression co-express hormone receptors (HR) such as those for estrogen and progesterone. Aberrant signaling through HER2 and other members of the HER-family mediates endocrine-resistance in estrogen receptor alpha (ERα) positive breast cancer. On the other hand, ERα co-expression has been shown to attenuate the efficiency of anti-HER2 therapies. These findings indicate that HER2 and ERα synergize to escape from both anti-ERα and anti-HER2-targeted therapies. Rationally designed clinical trials that combine endocrine therapy with anti-HER2 agents to interfere with HER2/ERα cross-talk have been conducted. However, the outcome of these trials suggests that novel therapeutic approaches are needed to further improve inhibition of HER2 and other HER-family members in conjunction with a more efficient ERα blockade. Here, we demonstrate that carfilzomib and bortezomib stabilize the HER2-specific protein tyrosine phosphatase BDP1 leading to decreased HER2 autophosphorylation, reduced HER2 activity and subsequently attenuated activation of the PI3K/Akt-pathway, together with blockade of ERα expression. We further observed that proteasome inhibitors (PIs) reverse autophosphorylation and thereby inhibit the activity of constitutively active mutant HER2. We also demonstrate that PIs cause cell death in lapatinib and endocrine-resistant HER2+/ER+ breast cancer cells. These findings suggest that PIs might have the potential to improve the management of HER2+/ER+ breast cancer patients by efficiently disrupting the bi-directional HER2/ERα cross-talk