34 research outputs found
Evaluation of the implementation of an integrated primary care network for prevention and management of cardiometabolic risk in Montréal
<p>Abstract</p> <p>Background</p> <p>The goal of this project is to evaluate the implementation of an integrated and interdisciplinary program for prevention and management of cardiometabolic risk (PCMR). The intervention is based on the Chronic Care Model. The study will evaluate the implementation of the PCMR in 6 of the 12 health and social services centres (CSSS) in Montréal, and the effects of the PCMR on patients and the practice of their primary care physicians up to 40 months following implementation, as well as the sustainability of the program. Objectives are: 1-to evaluate the effects of the PCMR and their persistence on patients registered in the program and the practice of their primary care physicians, by implementation site and degree of exposure to the program; 2-to assess the degree of implementation of PCMR in each CSSS territory and identify related contextual factors; 3-to establish the relationships between the effects observed, the degree of PCMR implementation and the related contextual factors; 4-to assess the impact of the PCMR on strengthening local services networks.</p> <p>Methods/Design</p> <p>The evaluation will use a mixed design that includes two complementary research strategies. The first strategy is similar to a quasi-experimental "before-after" design, based on a quantitative approach; it will look at the program's effects and their variations among the six territories. The effects analysis will use data from a clinical database and from questionnaires completed by participating patients and physicians. Over 3000 patients will be recruited. The second strategy corresponds to a multiple case study approach, where each of the six CSSS constitutes a case. With this strategy, qualitative methods will set out the context of implementation using data from semi-structured interviews with program managers. The quantitative data will be analyzed using linear or multilevel models complemented with an interpretive approach to qualitative data analysis.</p> <p>Discussion</p> <p>Our study will identify contextual factors associated with the effectiveness, successful implementation and sustainability of such a program. The contextual information will enable us to extrapolate our results to other contexts with similar conditions.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01326130">NCT01326130</a></p
A Membrane Fusion Protein αSNAP Is a Novel Regulator of Epithelial Apical Junctions
Tight junctions (TJs) and adherens junctions (AJs) are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF) attachment protein alpha (αSNAP), regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins
A comprehensive overview of radioguided surgery using gamma detection probe technology
The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology