10,366 research outputs found
Isospin emission and flows at high baryon density: a test of the symmetry potential
High energy Heavy Ion Collisions (HIC) are studied in order to access nuclear
matter properties at high density. Particular attention is paid to the
selection of observables sensitive to the poorly known symmetry energy at high
baryon density, of large fundamental interest, even for the astrophysics
implications. Using fully consistent transport simulations built on effective
theories we test isospin observables ranging from nucleon/cluster emissions to
collective flows (in particular the elliptic, squeeze out, part). The effects
of the competition between stiffness and momentum dependence of the Symmetry
Potential on the reaction dynamics are thoroughly analyzed. In this way we try
to shed light on the controversial neutron/proton effective mass splitting at
high baryon and isospin densities. New, more exclusive, experiments are
suggested.Comment: 10 pages, 16 figures, new figure added, accepted for publication in
Phys.Rev.
Isospin emission and flows at high baryon density: a test of the symmetry potential
High energy Heavy Ion Collisions (HIC) are studied in order to access nuclear
matter properties at high density. Particular attention is paid to the
selection of observables sensitive to the poorly known symmetry energy at high
baryon density, of large fundamental interest, even for the astrophysics
implications. Using fully consistent transport simulations built on effective
theories we test isospin observables ranging from nucleon/cluster emissions to
collective flows (in particular the elliptic, squeeze out, part). The effects
of the competition between stiffness and momentum dependence of the Symmetry
Potential on the reaction dynamics are thoroughly analyzed. In this way we try
to shed light on the controversial neutron/proton effective mass splitting at
high baryon and isospin densities. New, more exclusive, experiments are
suggested.Comment: 10 pages, 16 figures, new figure added, accepted for publication in
Phys.Rev.
A Semantic Web Annotation Tool for a Web-Based Audio Sequencer
Music and sound have a rich semantic structure which is so clear to the composer and the listener, but that remains mostly hidden to computing machinery. Nevertheless, in recent years, the introduction of software tools for music production have enabled new opportunities for migrating this knowledge from humans to machines. A new generation of these tools may exploit sound samples and semantic information coupling for the creation not only of a musical, but also of a "semantic" composition. In this paper we describe an ontology driven content annotation framework for a web-based audio editing tool. In a supervised approach, during the editing process, the graphical web interface allows the user to annotate any part of the composition with concepts from publicly available ontologies. As a test case, we developed a collaborative web-based audio sequencer that provides users with the functionality to remix the audio samples from the Freesound website and subsequently annotate them. The annotation tool can load any ontology and thus gives users the opportunity to augment the work with annotations on the structure of the composition, the musical materials, and the creator's reasoning and intentions. We believe this approach will provide several novel ways to make not only the final audio product, but also the creative process, first class citizens of the Semantic We
Isospin Dynamics in Heavy Ion Collisions: from Coulomb Barrier to Quark Gluon Plasma
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium
nuclear interaction in regions away from saturation. In this report we present
a selection of new reaction observables in dissipative collisions particularly
sensitive to the symmetry term of the nuclear Equation of State (Iso-EoS). We
will first discuss the Isospin Equilibration Dynamics. At low energies this
manifests via the recently observed Dynamical Dipole Radiation, due to a
collective neutron-proton oscillation with the symmetry term acting as a
restoring force. At higher beam energies Iso-EoS effects will be seen in
Imbalance Ratio Measurements, in particular from the correlations with the
total kinetic energy loss. For fragmentation reactions in central events we
suggest to look at the coupling between isospin distillation and radial flow.
In Neck Fragmentation reactions important information can be obtained
from the correlation between isospin content and alignement. The high density
symmetry term can be probed from isospin effects on heavy ion reactions at
relativistic energies (few AGeV range). Rather isospin sensitive observables
are proposed from nucleon/cluster emissions, collective flows and meson
production. The possibility to shed light on the controversial neutron/proton
effective mass splitting in asymmetric matter is also suggested. A large
symmetry repulsion at high baryon density will also lead to an "earlier"
hadron-deconfinement transition in n-rich matter. A suitable treatment of the
isovector interaction in the partonic EoS appears very relevant.Comment: 18 pages, 12 figures, lecture at the 2008 Erice School on Nuclear
Physics, to appear in Progress in Particle and Nuclear Physic
Estimating transmission probability in schools for the 2009 H1N1 influenza pandemic in Italy
BACKGROUND: Epidemic models are being extensively used to understand the main pathways of spread of infectious diseases, and thus to assess control methods. Schools are well known to represent hot spots for epidemic spread; hence, understanding typical patterns of infection transmission within schools is crucial for designing adequate control strategies. The attention that was given to the 2009 A/H1N1pdm09 flu pandemic has made it possible to collect detailed data on the occurrence of influenza-like illness (ILI) symptoms in two primary schools of Trento, Italy. RESULTS: The data collected in the two schools were used to calibrate a discrete-time SIR model, which was designed to estimate the probabilities of influenza transmission within the classes, grades and schools using Markov Chain Monte Carlo (MCMC) methods. We found that the virus was mainly transmitted within class, with lower levels of transmission between students in the same grade and even lower, though not significantly so, among different grades within the schools. We estimated median values of R 0 from the epidemic curves in the two schools of 1.16 and 1.40; on the other hand, we estimated the average number of students infected by the first school case to be 0.85 and 1.09 in the two schools. CONCLUSIONS: The discrepancy between the values of R 0 estimated from the epidemic curve or from the within-school transmission probabilities suggests that household and community transmission played an important role in sustaining the school epidemics. The high probability of infection between students in the same class confirms that targeting within-class transmission is key to controlling the spread of influenza in school settings and, as a consequence, in the general population
Comparison of dynamical multifragmentation models
Multifragmentation scenarios, as predicted by antisymmetrized molecular
dynamics (AMD) or momentum-dependent stochastic mean-field (BGBD) calculations
are compared. While in the BGBD case fragment emission is clearly linked to the
spinodal decomposition mechanism, i.e. to mean-field instabilities, in AMD
many-body correlations have a stronger impact on the fragmentation dynamics and
clusters start to appear at earlier times. As a consequence, fragments are
formed on shorter time scales in AMD, on about equal footing of light particle
pre-equilibrium emission. Conversely, in BGBD pre-equilibrium and fragment
emissions happen on different time scales and are related to different
mechanisms
A Separate Higgs?
We investigate the possibility of a multi-Higgs doublet model where the
lightest neutral Higgs boson () decouples from the fermion sector. We are
partially motivated by the four events with
\,GeV recently observed by the L3 collaboration,
which could be a signal for .
Collider signatures for the additional physical Higgs bosons present in such
models are discussed.Comment: 8 pages (plus 2 figures, available by request), latex,
ANL-HEP-PR-92-10
Binary open clusters in the Milky Way: photometric and spectroscopic analysis of NGC 5617 and Trumpler 22
Using photometry and high resolution spectroscopy we investigate for the
first time the physical connection between the open clusters NGC 5617 and
Trumpler 22. Based on new CCD photometry we report their spatial proximity and
common age of ~70 Myr. Based on high resolution spectra collected using the
HERMES and UCLES spectrographs on the Anglo-Australian telescope, we present
radial velocities and abundances for Fe, Na, Mg, Al, Si, Ca and Ni. The
measured radial velocities are -38.63 +/-2.25 km/s for NGC 5617 and -38.46
+/-2.08 km/s for Trumpler 22. The mean metallicity of NGC 5617 was found to be
[Fe/H] =-0.18 +/-0.02 and for Trumpler 22 was found to be [Fe/H] = -0.17
+/-0.04. The two clusters share similar abundances across the other elements,
indicative of a common chemical enrichment history of these clusters. Together
with common motions and ages we confirm that NGC 5617 and Trumpler 22 are a
primordial binary cluster pair in the Milky Way.Comment: 7 pages, 3 figure, accepted by MNRA
Noninvasive deep brain stimulation using focused energy sources
A non-invasive methodological possibility for brain stimulation through the simultaneous use of an external energy beam and an existing brain imaging system such as functional magnetic resonance imaging (fMRI) is herein proposed; the main advantage is to confine the stimulation into a single brain area, avoiding unintentional stimulation of adjoining brain regions, thus, allowing for deep brain stimulation. The methodological possibility is to be used for research, treatment and diagnosis of neurological, cognitive and neurophysiologic disorders. The method includes the simultaneous steps of applying focused thermal energy stimulation within a living brain, and monitoring such stimulation using MRI thermometry images; in addition, it includes the detection of stimulated neuronal impulses by its potentially effects in the blood oxygenation level (BOLD) fMRI response signal
- …