161 research outputs found

    Brane Universes with Gauss-Bonnet-Induced-Gravity

    Full text link
    The DGP brane world model allows us to get the observed late time acceleration via modified gravity, without the need for a ``dark energy'' field. This can then be generalised by the inclusion of high energy terms, in the form of a Gauss-Bonnet bulk. This is the basis of the Gauss-Bonnet-Induced-Gravity (GBIG) model explored here with both early and late time modifications to the cosmological evolution. Recently the simplest GBIG models (Minkowski bulk and no brane tension) have been analysed. Two of the three possible branches in these models start with a finite density ``Big-Bang'' and with late time acceleration. Here we present a comprehensive analysis of more general models where we include a bulk cosmological constant and brane tension. We show that by including these factors it is possible to have late time phantom behaviour.Comment: 12 pages, 19 figures. Minor modifications to text, comments on phantom behaviour added. References added. As submitted to JCA

    Brane Decay of a (4+n)-Dimensional Rotating Black Hole. III: spin-1/2 particles

    Get PDF
    In this work, we have continued the study of the Hawking radiation on the brane from a higher-dimensional rotating black hole by investigating the emission of fermionic modes. A comprehensive analysis is performed that leads to the particle, power and angular momentum emission rates, and sheds light on their dependence on fundamental parameters of the theory, such as the spacetime dimension and angular momentum of the black hole. In addition, the angular distribution of the emitted modes, in terms of the number of particles and energy, is thoroughly studied. Our results are valid for arbitrary values of the energy of the emitted particles, dimension of spacetime and angular momentum of the black hole, and complement previous results on the emission of brane-localised scalars and gauge bosons.Comment: Latex file, JHEP style, 34 pages, 16 figures Energy range in plots increased, minor changes, version published in JHE

    Generating socially appropriate tutorial dialog

    Get PDF
    Analysis of student-tutor coaching dialogs suggest that good human tutors attend to and attempt to influence the motivational state of learners. Moreover, they are sensitive to the social face of the learner, and seek to mitigate the potential face threat of their comments. This paper describes a dialog generator for pedagogical agents that takes motivation and face threat factors into account. This enables the agent to interact with learners in a socially appropriate fashion, and foster intrinsic motivation on the part of the learner, which in turn may lead to more positive learner affective states

    Split Fermions in Extra Dimensions and Exponentially Small Cross-Sections at Future Colliders

    Get PDF
    We point out a dramatic new experimental signature for a class of theories with extra dimensions, where quarks and leptons are localized at slightly separated parallel ``walls'' whereas gauge and Higgs fields live in the bulk of the extra dimensions. The separation forbids direct local couplings between quarks and leptons, allowing for an elegant solution to the proton decay problem. We show that scattering cross sections for collisions of fermions which are separated in the extra dimensions vanish exponentially at energies high enough to probe the separation distance. This is because the separation puts a lower bound on the attainable impact parameter in the collision. We present cross sections for two body high energy scattering and estimate the power with which future colliders can probe this scenario, finding sensitivity to inverse fermion separations of order 10-70 TeV.Comment: 18 pages, 3 figure

    Constraining the Littlest Higgs

    Get PDF
    Little Higgs models offer a new way to address the hierarchy problem, and give rise to a weakly-coupled Higgs sector. These theories predict the existence of new states which are necessary to cancel the quadratic divergences of the Standard Model. The simplest version of these models, the Littlest Higgs, is based on an SU(5)/SO(5)SU(5)/SO(5) non-linear sigma model and predicts that four new gauge bosons, a weak isosinglet quark, t′t', with Q=2/3Q=2/3, as well as an isotriplet scalar field exist at the TeV scale. We consider the contributions of these new states to precision electroweak observables, and examine their production at the Tevatron. We thoroughly explore the parameter space of this model and find that small regions are allowed by the precision data where the model parameters take on their natural values. These regions are, however, excluded by the Tevatron data. Combined, the direct and indirect effects of these new states constrain the `decay constant' f\gsim 3.5 TeV and m_{t'}\gsim 7 TeV. These bounds imply that significant fine-tuning be present in order for this model to resolve the hierarchy problem.Comment: 31 pgs, 26 figures; bound on t' mass fixed to mt'>2f, conclusions unchange

    Brane decay of a (4+n)-dimensional rotating black hole: spin-0 particles

    Get PDF
    In this work, we study the `scalar channel' of the emission of Hawking radiation from a (4+n)-dimensional, rotating black hole on the brane. We numerically solve both the radial and angular part of the equation of motion for the scalar field, and determine the exact values of the absorption probability and of the spheroidal harmonics, respectively. With these, we calculate the particle, energy and angular momentum emission rates, as well as the angular variation in the flux and power spectra -- a distinctive feature of emission during the spin-down phase of the life of the produced black hole. Our analysis is free from any approximations, with our results being valid for arbitrarily large values of the energy of the emitted particle, angular momentum of the black hole and dimensionality of spacetime. We finally compute the total emissivities for the number of particles, energy and angular momentum and compare their relative behaviour for different values of the parameters of the theory.Comment: 24 pages, 13 figure

    Birefringence of interferential mirrors at normal incidence Experimental and computational study

    Full text link
    In this paper we present a review of the existing data on interferential mirror birefringence. We also report new measurements of two sets of mirrors that confirm that mirror phase retardation per reflection decreases when mirror reflectivity increases. We finally developed a computational code to calculate the expected phase retardation per reflection as a function of the total number of layers constituting the mirror. Different cases have been studied and we have compared computational results with the trend of the experimental data. Our study indicates that the origin of the mirror intrinsic birefringence can be ascribed to the reflecting layers close to the substrate.Comment: To be published in Applied Physics

    Brane Decay of a (4+n)-Dimensional Rotating Black Hole. II: spin-1 particles

    Get PDF
    The present works complements and expands a previous one, focused on the emission of scalar fields by a (4+n)-dimensional rotating black hole on the brane, by studying the emission of gauge fields on the brane from a similar black hole. A comprehensive analysis of the particle, energy and angular momentum emission rates is undertaken, for arbitrary angular momentum of the black hole and dimensionality of spacetime. Our analysis reveals the existence of a number of distinct features associated with the emission of spin-1 fields from a rotating black hole on the brane, such as the behaviour and magnitude of the different emission rates, the angular distribution of particles and energy, the relative enhancement compared to the scalar fields, and the magnitude of the superradiance effect. Apart from their theoretical interest, these features can comprise clear signatures of the emission of Hawking radiation from a brane-world black hole during its spin-down phase upon successful detection of this effect during an experiment.Comment: 35 pages, 19 figures, Latex fil

    Region graph partition function expansion and approximate free energy landscapes: Theory and some numerical results

    Full text link
    Graphical models for finite-dimensional spin glasses and real-world combinatorial optimization and satisfaction problems usually have an abundant number of short loops. The cluster variation method and its extension, the region graph method, are theoretical approaches for treating the complicated short-loop-induced local correlations. For graphical models represented by non-redundant or redundant region graphs, approximate free energy landscapes are constructed in this paper through the mathematical framework of region graph partition function expansion. Several free energy functionals are obtained, each of which use a set of probability distribution functions or functionals as order parameters. These probability distribution function/functionals are required to satisfy the region graph belief-propagation equation or the region graph survey-propagation equation to ensure vanishing correction contributions of region subgraphs with dangling edges. As a simple application of the general theory, we perform region graph belief-propagation simulations on the square-lattice ferromagnetic Ising model and the Edwards-Anderson model. Considerable improvements over the conventional Bethe-Peierls approximation are achieved. Collective domains of different sizes in the disordered and frustrated square lattice are identified by the message-passing procedure. Such collective domains and the frustrations among them are responsible for the low-temperature glass-like dynamical behaviors of the system.Comment: 30 pages, 11 figures. More discussion on redundant region graphs. To be published by Journal of Statistical Physic

    Experimental Probes of Localized Gravity: On and Off the Wall

    Get PDF
    The phenomenology of the Randall-Sundrum model of localized gravity is analyzed in detail for the two scenarios where the Standard Model (SM) gauge and matter fields are either confined to a TeV scale 3-brane or may propagate in a slice of five dimensional anti-deSitter space. In the latter instance, we derive the interactions of the graviton, gauge, and fermion Kaluza-Klein (KK) states. The resulting phenomenological signatures are shown to be highly dependent on the value of the 5-dimensional fermion mass and differ substantially from the case where the SM fields lie on the TeV-brane. In both scenarios, we examine the collider signatures for direct production of the graviton and gauge KK towers as well as their induced contributions to precision electroweak observables. These direct and indirect signatures are found to play a complementary role in the exploration of the model parameter space. In the case where the SM field content resides on the TeV-brane, we show that the LHC can probe the full parameter space and hence will either discover or exclude this model if the scale of electroweak physics on the 3-brane is less than 10 TeV. We also show that spontaneous electroweak symmetry breaking of the SM must take place on the TeV-brane.Comment: 62 pages, Latex, 22 figure
    • …
    corecore