13,356 research outputs found
Role of subclinical gut inflammation in the pathogenesis of spondyloarthritis
Subclinical gut inflammation occurring in patients affected by spondyloarthritis (SpA) is correlated with the severity of spine inflammation. Several evidences indicate that dysbiosis occurs in SpA, and that may modulate intestinal permeability and intestinal immune responses. The presence of intestinal dysbiosis is accompanied in SpA patients with the presence of zonulin-dependent alterations of gut-epithelial and gut-vascular barriers. The leakage of epithelial and endothelial surface layers is followed by the translocation of bacterial products, such as lipopolysaccharide and intestinal fatty acid binding protein, in the systemic circulation. These bacterial products may downregulate the expression of CD14 on circulating monocytes leading to an "anergic" phenotype. In the gut, IL-23 may induce the expansion of innate immune cells such as mucosal-associated invariant T cells, γΎ T cells, and innate lymphoid cells of group 3 that through the interaction with MAdCAM1 may recirculate form the gut to the sites of SpA active inflammation. On the basis of these findings, gut inflammation observed in SpA patient seems to be not only an epiphenomenon of the on going systemic inflammatory process but may also represent the base camp in which inflammatory cells are activated and from whom they shuttle
NEW PARTICLES AND INTERACTIONS
We analyze the manifestations of new matter particles predicted by models of
new physics beyond the Standard Model, at present and future high--energy
colliders. We consider both the production of these new particles and some of
their indirect signatures at and colliders as well as TeV \ee
colliders with their \ee, e \gamma, \gamma \gamma and modes. The
report is arranged into four main sections plus an overview. These sections
will deal separately with exotic and excited fermions, difermions, and new
interactions.Comment: 64 pages, latex, 30 figures (not included). The full *.ps file
including the figures can be obtained via anonymous ftp at
ftp://lpsvsh.lps.umontreal.ca/hep_th/dpf.ps . To appear as a chapter in
"Electroweak Symmetry Breaking and Beyond the Standard Model", edited by T.
Barklow, S. Dawson, H.E. Haber and S. Siegrist, World Scientifi
Bosonic Seesaw in the Unparticle Physics
Recently, conceptually new physics beyond the Standard Model has been
proposed by Georgi, where a new physics sector becomes conformal and provides
"unparticle" which couples to the Standard Model sector through higher
dimensional operators in low energy effective theory. Among several
possibilities, we focus on operators involving the (scalar) unparticle, Higgs
and the gauge bosons. Once the Higgs develops the vacuum expectation value
(VEV), the conformal symmetry is broken and as a result, the mixing between the
unparticle and the Higgs boson emerges. In this paper, we consider a natural
realization of bosonic seesaw in the context of unparticle physics. In this
framework, the negative mass squared or the electroweak symmetry breaking
vacuum is achieved as a result of mass matrix diagonalization. In the
diagonalization process, it is important to have zero value in the
(1,1)-element of the mass matrix. In fact, the conformal invariance in the
hidden sector can actually assure the zero of that element. So, the bosonic
seesaw mechanism for the electroweak symmetry breaking can naturally be
understood in the framework of unparticle physics.Comment: 5 pages, no figure; added one more referenc
Complexity of the Sherrington-Kirkpatrick Model in the Annealed Approximation
A careful critical analysis of the complexity, at the annealed level, of the
Sherrington-Kirkpatrick model has been performed. The complexity functional is
proved to be always invariant under the Becchi-Rouet-Stora-Tyutin
supersymmetry, disregarding the formulation used to define it. We consider two
different saddle points of such functional, one satisfying the supersymmetry
[A. Cavagna {\it et al.}, J. Phys. A {\bf 36} (2003) 1175] and the other one
breaking it [A.J. Bray and M.A. Moore, J. Phys. C {\bf 13} (1980) L469]. We
review the previews studies on the subject, linking different perspectives and
pointing out some inadequacies and even inconsistencies in both solutions.Comment: 20 pages, 4 figure
Histopathology of the gut in rheumatic diseases
The gastrointestinal tract regulates the trafficking of macromolecules between the environment and the host through an epithelial barrier mechanism and is an important part of the immune system controlling the equilibrium between tolerance and immunity to non-self-antigens. Various evidence indicates that intestinal inflammation occurs in patients with rheumatic diseases. In many rheumatic diseases intestinal inflammation appears to be linked to dysbiosis and possibly represents the common denominator in the pathogenesis of different rheumatic diseases. The continuative interaction between dysbiosis and the intestinal immune system may lead to the aberrant activation of immune cells that can re-circulate from the gut to the sites of extraintestinal inflammation as observed in patients with ankylosing spondylitis. The exact contribution of genetic factors in the development of intestinal inflammation in rheumatic diseases needs to be clarified
Single Production in Collisions at the NLC
Single production in collisions at the NLC can be used to
probe the Majorana nature of the heavy neutrinos present in the Left-Right
Symmetric Model below the kinematic threshold for their direct production. For
colliders in the TeV range, typical cross sections of order
are obtained, depending on the specific choice of model parameters.
Backgrounds arising from Standard Model processes are shown to be small. This
analysis greatly extends the kinematic range of previous studies wherein the
production of an on-shell, like-sign pair of 's at the NLC was considered.Comment: 13pp, 3 figures (available on request), LaTex, SLAC-PUB-647
Observation of the Inverse Cotton-Mouton Effect
We report the observation of the Inverse Cotton-Mouton Effect (ICME) i.e. a
magnetization induced in a medium by non resonant linearly polarized light
propagating in the presence of a transverse magnetic field. We present a
detailed study of the ICME in a TGG crystal showing the dependence of the
measured effect on the light intensity, the optical polarization, and on the
external magnetic field. We derive a relation between the Cotton-Mouton and
Inverse Cotton-Mouton effects that is roughly in agreement with existing
experimental data. Our results open the way to applications of the ICME in
optical devices
MENGA: a new comprehensive tool for the integration of neuroimaging data and the Allen human brain transcriptome atlas
Brain-wide mRNA mappings offer a great potential for neuroscience research as they can provide information about system proteomics. In a previous work we have correlated mRNA maps with the binding patterns of radioligands targeting specific molecular systems and imaged with positron emission tomography (PET) in unrelated control groups. This approach is potentially applicable to any imaging modality as long as an efficient procedure of imaging-genomic matching is provided. In the original work we considered mRNA brain maps of the whole human genome derived from the Allen human brain database (ABA) and we performed the analysis with a specific region-based segmentation with a resolution that was limited by the PET data parcellation. There we identified the need for a platform for imaging-genomic integration that should be usable with any imaging modalities and fully exploit the high resolution mapping of ABA dataset.In this work we present MENGA (Multimodal Environment for Neuroimaging and Genomic Analysis), a software platform that allows the investigation of the correlation patterns between neuroimaging data of any sort (both functional and structural) with mRNA gene expression profiles derived from the ABA database at high resolution.We applied MENGA to six different imaging datasets from three modalities (PET, single photon emission tomography and magnetic resonance imaging) targeting the dopamine and serotonin receptor systems and the myelin molecular structure. We further investigated imaging-genomic correlations in the case of mismatch between selected proteins and imaging targets
- âŠ