UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Complexity in the Sherrington-Kirkpatrick model in the annealed approximation
Crisanti, A.; Leuzzi, L.; Parisi, G.; Rizzo, T.

Publication date
2003

Published in
Physical Review B

Link to publication

Citation for published version (APA):
Crisanti, A., Leuzzi, L., Parisi, G., & Rizzo, T. (2003). Complexity in the Sherrington-
Kirkpatrick model in the annealed approximation. Physical Review B, 68(17), 174401.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Download date:27 Jul 2022


https://dare.uva.nl/personal/pure/en/publications/complexity-in-the-sherringtonkirkpatrick-model-in-the-annealed-approximation(0b82f09b-7197-4413-a31c-b76de6c8ae2e).html

PHYSICAL REVIEW B 68, 174401 (2003

Complexity in the Sherrington-Kirkpatrick model in the annealed approximation
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Dipartimento di Fisica and INFM SMC Center, Universitta Roma “La Sapienza,” Piazzale Aldo Moro 2, 1-00185 Roma, Italy
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A careful critical analysis of the complexity, at the annealed level, of the Sherrington-Kirkpatrick model has
been performed. The complexity functional is proved to be always invariant under the Becchi-Rouet-Stora-
Tyutin supersymmetry, disregarding the formulation used to define it. We consider two different saddle points
of such functional, one satisfying the supersymmékyCavagneet al, J. Phys. A36, 1175(2003] and the
other one breaking ifA. J. Bray and M. A. Moore, J. Phys. €3, L469 (1980]. We review the previews
studies on the subject, linking different perspectives and pointing out some inadequacies and even inconsis-
tencies in both solutions.
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[. INTRODUCTION ity of the spin-glass mean-field Sherrington-Kirkpatri&K)
model? the prototype of mean-field spin-glass models. The
The organization of thermodynamic states in complexfirst one was originally presented by Bray and MGQi@M);
systems, fundamental to the understanding of dynamic propghere the complexity was analyzed both in thenealed
erties, is a rather difficult task to deal with. The quenchedapproximation—i.e., as the logarithm of the disordered aver-
disorder characterizing these systems and the consequeage of the number of states—and as quenched average—i.e.,
frustration are such that a huge number of stable and metdhe average of the logarithm—performed making use of the
stable states arises, even growing exponentially with theeplica trick in the case of replica symmetry. The second one
number of elements composing the system. In order to throwvas initially proposed in Ref. 6, where Parisi and Potters
light on the structure of the landscape of the thermodynamishowed that the complexity could be obtained by calculating
potential, a very important theoretical tool is the logarithm ofthe partition function ofm distinct real replicas of the
the number of states, either calledmplexityor configura-  systemd and provided the connection with the previous for-
tional entropy malism by means of the generalization of theo-group
In structural glasses, seen as disordered amorphous solidasatZ® In that context the annealed solution was called “un-
and, thus, treated by the techniques of complex systems, btoken” two-group.
the glass transition the entropy drops to(@ften much Over the years it has become more and more evident that
smaller value, going from the liquid to the solid state and thean important role in the study of the complexity of disor-
states, as opposed, e.g., to the crystal states do not displdgred systems is played by the so-called Becchi-Rouet-Stora-
any specific symmetry. The condensed system has lost thB/utin (BRST) symmetry. Such a property, first discovered
ability of visiting different stategat least on the observation in the quantization of gauge theoriéss a supersymmetry
time scale consideredind this codifies into the loss of en- (susy, in the sense that it transforms bosons into fermions
tropy. All the other possible states, not selected at the moand vice versa. In the context of stochastic field equations, it
ment of the transition of the liquid to a glass, are, anywaycan be shown that the integration of the generating functional
still there from a statistical point of view and could, in prin- of correlation functions over disorder leads to an action pre-
ciple, still be reached on much larger time scales. The comsenting BRST symmetH) (for the random field Ising model
plexity counts the many equivalent states that could havease see also Ref. 1IThe integrated generating functional
been chosen at the moment of the quench. formally coincides with the average over the quenched ran-
In disordered mean-field models for glasses, e.g., thelom couplings of the number of metastable states of mean-
p-spin interaction spin glass models with stable one-step refield spin-glass models. In such a context, the property of
lica symmetry breakindlRSB frozen phasé;3 the pres- BRST-SUSY invariance has recently been analyzed in Refs.
ence of many metastable states can be detected looking at th& and 13. In this approach, imposing the invariance helps in
relaxation that displays a dynamical transition, with diverg-simplifying the computation and it is equivalent to setting the
ing relaxation time scales, at a temperatdiee dynamical due interdependence between the physical objects deriving
temperature¢ above the point where a true thermodynamicfrom the Thouless-Anderson-Palm@AP) free energy func-
transition takes place, calledatic temperatureln the range tional and composing the action—namely, the TAP func-
between the static and dynamic temperatures the complexityonal itself, its first derivatives with respect to the average
displayed turns out to be extensive. site magnetizatiofii.e., the TAP equationsand its Hessian.
What happens moving from 1RSB-stable spin-glass modin Ref. 13 a BRST symmetric annealed complexity is built,
els to spin-glass mean-field models whose frozen phase ishile the BM complexity functional appears to violate such
described by means of a full replica symmetry breakingsymmetry.
(FRSB) solution? Generally speaking, the fact that the solutions of a set of
In the last 20 years basically two different proposals haveequations are BRST invariant is connected with some robust-
been put forward for the nature and behavior of the complexness of the equations under linear perturbation. Let us take
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into account the equations, F=0, whereF is the thermo-  often refer to as the BRST-SUSY-breaking solutiéor the
. . L . nnealed complexitare solutions of the same set of saddle
dynamic functional and the derivative is taken with respecﬁOint equations

to the_mlcroscoplc variablen;, i=1,...N. If we perturb the In Secs. I B and Il C we derive such properties, compar-
equations by means of small external field&,F=0 4 the two approaches in all essential details.

—dmF=h;, the whole set of solutions could, in principle,  Afterwards, we give some hints in order to understand the
drastically change. In general, solutions will appear or disapPhysical meaning of the BRST SUSY, showing, in Sec. Il D,

pear at different values df with no given prescription for ~the connection between such property and the property of
the relative transformation of the complexity function and itsnonbifurcationof TAP solutions of linearly perturbed TAP

dominion. The BRST SUSY can be recovered assuming thgtduations with respect to the unperturbed solutions and the
the number of solutions at a given value Bf does not BRST SUSY. In Sec. Il E the identification between the an-

change. In Sec. Il D we present an argument to explain suchealed BRST-SUSY solution and the static 1RSB solution at
correspondence. zero magnetic field, the main topic of Ref. 13, is rederived in

Both the approach of Ref. 5 and the one of Ref. 13 identhe case of tht_a BM formulation. Moreover, in Sec._ II'F, we
tify an extensive complexity, computing the number of soly-recast everything in the formulation of the ge_nerallmd-
tions of TAP equation in the annealed approximation and 9r0up ansatof Ref. 6 and we show that breaking the super-
with the further simplification of neglecting the modulus of SYMMelry amounts to consider a nontrivial ansatz in the rep-
the determinant of the Hessian of the TAP free energy funclica calculation. ,
tional. However, the two complexities display many differ- N the second part of the paper, Sec. lll, we discuss sev-
ences. They have a different lower band-edge value of theral issues connected with the problem of selectlng the right
complexity curve versus free energy and a different dominSelution between the BM and BRST supersymmetric one. In
ion in free energy, with different thresholds. Their magnitudeP@rticular, we show thathe sign of the determinant of the
is different, BM complexity being much larger than the OneHeSS|an.cannot bg determined py the saddle pomt solution at
satisfying the BRST SUSY. Performing the integration overtn€ 1eading order in Nand, applying Plefka’s criterion to the
the whole interval of possible free energy values yields @#nalysis of the physical meaning of TAP solutions, we ex-
finite result in the BM case, but zero in the BRST-SUSY Plain why the parameth entering the determinant has to be
one’® At the threshold, the behavior is once again qualita-S€t €qual to zero, as in Refs. 5, 6, 12 and 13, and why, as
tively different: the BM complexity goes to zero smoothly, OPPosed to what is stated in Refs. 5 and 18, such a choice
whereas the BRST-SUSY one drops discontinuously to zerd!0€S not guarantee the positivity of the determinahthe

What do the two different complexities represent andHessian of the TAP free energy functional.
which one of the two is the “right” one, yielding proper We also recall the results of Kurchidrabout the sponta-

information over the organization of the states? MoreoverN€0US BRST-SUSY breaking taking place on the BM saddle

what do these quantities become in an exact FRSB quench@@int: the BRST SUSY s recovered by the analysis of the
computation? prefactor of the exponent ™25, showing it to be zero on

We study the complexity of the SK model, mean-field the BM s_addle point. This result, while ensgring mathemati-
spin model with quenched disorder, critically reviewing the €@l consistency, poses the problem of which is the correct
analysis made at the annealed level in the far and near pag¥éfactor of the saddle point when the modulus of the deter-
linking apparently different approaches and discussing th&inant is not dropped. _
role of BRST supersymmetry in this contest. We will care- AS @ by-product, dealing with the problem that the true
fully look at the limitations of the annealed approaches, intheérmedynamic description of the low-temperature phase of
particular from the point of view of physical stability, includ- e SK model is yielded by a FRSB solution instead of a
ing the incompleteness of the one-step RSB approximatiokRSB one, in Sec. Il D we show théte complexity pro-
for the SK model. posed by BrayMoore, and Young® as the quenched analog

Our aim is to present here a comprehensive picture of th8f the above broadly mentioned annealed complexiy,
annealed level, leaving for elsewhere the study of théomputed over a BRST-SUSY saddle point
quenched FRSB complexity®

Before dealing with details and derivations we now very
briefly anticipate the main results of this paper and we out-
line the scheme of their presentation.

The BM formalism'iis equivalent to the supersymmetric
one as presented in Refs. 12 and 13. Both at the “micro- Before discussing the properties of the number of solu-
scopic” level (site commuting and anticommuting variables tions of the mean-field equations for the SK model, we very
and at the “macroscopic” levelorder parametejsthe ac-  shortly summarize the basic, widely known, features of the
tions in the two formalisms are related to each other by arhouless-Anderson-Palntérformulation. The TAP equa-

simple change of variables. The form of BRST transformations for the local average magnetization of the ith spin
tions and of the Ward identities are also obtained in the BMgre

notation. We thus can consider just ofgipersymmetric
functional generating one set of saddle point equations. 5
Both the BRST-SUSY and BM solutidméich we will m;=tanij B(h;—B8(1—q)m;)] Vi=1,... N, (@

II. COUNTING THE TAP STATES: THE COMPLEXITY
IN THE ANNEALED APPROXIMATION
AND THE BRST SUSY
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hi=2 9ym;, 2 F({m™}) =2 f(m;;q)
whereq is the self-overlap of TAP configurations, _ i T 3_2 2
=N EI: In2 7 (1—-qg°)
1
a=5 2 m, 3

_ 1 . ,
[ +§[mitanh mi+In(1-mH)];, (1D

andJ;; are distributed as

N Nfo
P(Jij): Eex —N? . (4)

wheref(m; ,q) is the site free energy computed on a solution
of Eq. (9).

A. Complexity in the annealed approximation

The associated free energy functional is What we are interested in is the number of solutions of
the TAP equations at different free energy levels, which can
Frad {m}) = Ead{m}) — T S {m}), (5) provide substantial information in order to understand the

free energy landscape and, therefore, the organization of the
N states. If we label each of th& solutions with the indexx
End{m}) = _z Jjmim; — 7(1_q)2, (6) = 1,...N, the.number of solutions having free energy den-
i< sity equal tof is

N
Stap= 2 Siayd M ;) ps(f)= 2 AlFiad {mh)—NF]. (12

This can be formally transformed as

2
=2i In2— %(1—q)2

N N
1
1 , ps(H=2 | I dms(m—m)5[Fig {m})—Nf]
—Eln(l—mi)+mitanh*1mi : 7 a=1J-1i=1
N
1
whereE,,, and S, are, respectively, the expressions for the = H dm; 8(Jm, F rad {M}))| A€, I, Frag {m})|
internal energy and the entropy of{en;} configuration and “Het
Eqg. (1) is yielded by differentiating Eq.5) (Ref. 14 X O] F o {m}) — N1, (13
ﬂmiFtap=0. Furthermore, one defines the disorder-
independent “field” where the Hessian takes the form
1 amiaijtap({m})
g(m;;q)=_tanh 'm;+B(1—q)m, ®)
g —J+11+,8(1 )5+Ol) (14
so that Eq.(1) can be reformulated as VB 1—mi2 P N/
Terms of order M will be neglected since they are not rel-
ImFrap=9(M; ;q)—z Jijm;=0. (9 evant for the present discussion.
]

At this point, one can compute the annealed complexity—
i.e., the logarithm of the average over the disorder of the

Using Eq.(9), the expression for the energy of a TAP solu- density of TAP solutions:

tion {m®" can be written without making use of the disorder
‘Jij as 1
Sa=yInps(f), (15

SO 1 . ﬁ 2 N
E({me})=~ 2B Z g(m;;q)m; =7 (1-q) where the overbar represents the average over the distribu-
tion of the J;;'s. Details of such computation for the SK
model can be found both in the original paper of Bray and
Moore (Ref. 5 and in the supersymmetric formulation of
Ref. 13, as well as in many other works: e.g., Refs. 17, 21
Combining this last result with the expressién for the and 22. Here, we only stress the basic fact that, in both
entropy one is able to formally rewrite the TAP free energyprocedures, the determinant of the Hessian is taken without
as a sum of single site-free energies of TAP solution as  absolute value, thus implying that the quantity actually com-

:_%Z mitanhflmi—g(l—qz). (10)
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puted would coincide with the “true” complexityeven |n the new set of variablesx’,m,,¢} the transformation
though in the annealed approximaticonly if the determi-  (18) keeping a BSRT-SUSY function invariant remains un-
nant of all the solutions we are counting were positive. Suckthanged. The shift ok; is performed over an integration

an assumption is hard to verify in the SK model. variable, thus without affecting the final result, yet the trans-
formations given in Eq(18) and the Ward identities com-
B. BRST invariance of the density of TAP solutions puted with the BM measure in the original set of variables

The density of TAP solutions can be written making use2'® changed. _ _
both of anticommuting{y} {E} and commuting variables In the old set of variables the BRST transformation reads

{mb {x} ag21? (as discussed also in Ref.)23

- > S(m,x, ¢, u —
p*f*‘fI”DmD¢D¢dgm”¢¢) (19 Sm=ep ox=esdi Sh=—ex =0, (24
S(m,x,E, lﬂ):Z XiﬂmiFtap({m}) and the averages over the two actions are connected by
+ ) b I Om F u
20 i 9 Fra () a0y ={ a[x-2 ) | 25
2 BM
+U[Fg{m})—Nf], (17)
where Da=prefactoixIl;da;. The transformation under where the averag§ - --))gy iS computed over the measure
which such an action is invariant'fst213 eSem so that Ward identities computed with the BM action
o become
5mi:€lﬂi 5Xi:EU¢i 8¢i: — €X; 5¢i:0' (18)
The Ward identities generated by imposing invariance with — u
respect to the above transformations of observables are, e.g., (i) em= —(MiX; )+ PRE (26)
(i) =—(Mpx;), 19
2
_ u
u( i) =(x2), (20) Ui ) mm= (X e — U(MiX; g + 29 (27)

where the averagg --)) is computed over the measie€
Bray and Moore used explicitly, in their computation, the Inserting Eq.(26) into Eq. (27) one gets
TAP equation(9) in order to simplify the procedure. In Ref.
13 it was claimed that such a substitution led to an action no
longer BRST invariant. Such an inconvenience is, however, ) _u
only apparent. Indeed, shifting the integration variablgs i/Bv= 7 d-
the BRST-invariant form is readily restored. The action
yielded by the BM procedure is different from the so-called
SUSY one because of the insertion of E®), which means

2
(28)

Even if in the notation of Ref. 13 it seemed that the action
Sgm Was not satisfying the BRST relations, this was exclu-
sively due to the fact that such relations in the BM notation
read differently.
1 1 Moving to the macroscopic level, where the average num-
+u 5 2 Jijmim; — ﬁ 2 g(m;;q)m; |. ber of solution is expressed as a function of the paramgters
! ! A, \, andB, the two approaches continue to be linked and
(21 equivalent to each other. The final expressions for the com-
plexity in Refs. 5(BM) and 13[Cavagna, Giardina, Parisi,
and Mezard CGPM)] are

S(X,m, i, ) = Sgm(X, M, 4, )

Since the quenched disordel; enters the action as
Jij(xim;+ i +ul2mmy), a shift in the integration vari-

able
BM p4(f;u,B,q,A,N)
u
X=X =X+ > (22
=eXtugqan) exp{ N| —Ag—pBuf

is enough to make both actions coincide:

_ u ) (B2—A?)

S(X,m, i, 1) = Sgm| X+ Em,m,lp,w). (23 —(B+A)(1—Q)+2—B2+|n| : (29)

174401-4
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| = ' dm ! +B
-1 \27B%q\ 1-m?

(Am—tanh m)?
X exp — +am?+uf(m;q) ¢,
2p%q

(30

B 1 ~
f(m;q)=—1In2— Z(l_qu > mtanh m

1
+ E|n(1—m2), (31)

CGPM pg(f;u,B,q,A,\N)

—Aq—Buf—(B+A)(1—0q)

= eXt{quA)\} exp{ N

2 2 2
+M_ﬁ_u2 2
23° 4

—Aug—pB%uq(1—q)+Inl

] , (32

|_fl dm 1 ‘B
-1 \J2mwB%q\ 1-m?

(Am—tanh 'm)?
xexp — +Aam?+u dy(m;q) ¢,
2p%q

(33

2
do(m;q)=—In2— %(1—q)2+mtanh‘1m

1
+§In(1—m2). (34)

The first expression is obtained making explicit use of Eq.
(10) for the TAP energy, while the second one is computed

PHYSICAL REVIEW B68, 174401 (2003

1 B?
Yy . —1
f(m,q)—d)o(m,q)—imtanh m— 7q(1—q). (37)

Since the formulations are equivalent, the notation to adopt
is no longer important. We will use the original notation of
Ref. 5, not simply because it is the oldest one, but rather to
have a more direct comparison with other works: e.g., the
one of Parisi and PottePayhich showed that the BM action
can be obtained from the Legendre transform approach of
Ref. 7 making a two-group ansatz on the ma@iy, entering

the computation of the free energy of the coupled repligas
this way they were able to find new solutions of the BM
equations called “unbroken two-group’or the quenched
computation of the complexity of Refs. 20 and 24. For sim-
plicity we drop the subscript BM in the following.

C. Saddle point equations

The variational equations, yielding the saddle p@ntal-
ues of the parameters for the annealed complexity, take the
form

a

Ju

) 1-m?
=0—-B=p% 1-q- B/ ) (39)

=0—f=(f(m;q)), (38

a

B

without ever using such a relation. Apparently the two ex-

pressions differ. Since, however, both actions describe the
evolution in the parameter space of the same system, the two

formulations must coincidéexactly as the “microscopic”
description and the final results antroducing a proper

g3 1 Am—tanh 1m)2 2
aZOHA:B+A——+<( )>+'B—Uq,
(40)
DN B 1 _1
A =0—A=-S(1-g+ E(mtanh m), (42)
924 2
N _0—>q—(m >, (42
where the average
11 )
(O(m)=T1 f dmO(m)eSmuasn (43
-1
l .
I— f dmemuas), (44)
-1

is taken over the action

change of variables. Indeed, to link the two approaches the

following transformation can be set:

2

Agu=Acgpmt > ua, (39

2

1
Agm=Acepm™T EUACGPM+ gUZQ-

(36)
Notice that the two function§(m;q) (in the BM formalisn)
and ®,(m;q) (in the formalism of Ref. 1Bare related to
each other by

. 1 1 2
L(m;u,q,A,N)=In 1 2+B —Eln(,B 27Qq)

(Am—tanh tm)?
2%q

+Am?+uf(m;q).

(45

As noted in Ref. 13 the last term of E@L0) was missing in
Ref. 5. The free energy of the TAP solutioh@n;q) is the
one expressed in Eqll) or (31).
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-0.75 0.7 -0.65 -0.6 -0.55 -0.77 -0769 -0.768 -0.767 -0.766 -0.765 -0.764 -0.763 -0.762
f f

FIG. 1. Comparison of complexities yielded, respectively, by the FIG. 2. Detail of the complexity curves for low free energy
BRST-SUSY solutiondashed ling and the BRST-SUSY-breaking values. The asterisks stand for the complexity of the static one-step
solution (solid line) of the annealed saddle point equationsTat RSB solution at zero magnetic field, coinciding with the BRST-
=0.2. The range of free energy values of the solution breaking th&USY saddle point. The values of free energy at which the com-
supersymmetry of the TAP actio@5) is much larger than thé plexity reaches zergsubexponential growth of solutions of TAP
range of the SUSY one. The maximum complexity for this solutionequations with increasing sigeare fgy=—0.7693, fgysy
is also much higher than the one for the BRST-invariant solution=—0.7651, both below the true equilibrium value Bt 0.2:f,

(the value at the cusp of the dashed cynguch a difference in- =-—0.7594(as computed, e.g., in the FRSB schenidotice that
creases by lowering. the branch on the left-hand side of the BRST-SUSY solution in not
shown.

Fixing u, therefore leaving as a free parameter, the above
equations have at least two different solutiéh®©ne solu- value on the BRST-invariant solution. The behavior of the
tion satisfies the two relations of BRST supersymmetry astinnealed complexity is univocal both inand inf.
stated in Refs. 12 and 13, which we rewrite here in the

present notation as D. Physical meaning of BRST SUSY in the context

5 of TAP solutions

B+A=— —uq, (46) In this section we will follow a reasonment allowing for
an intuitive explanation of the physical meaning of the BRST
supersymmetry in terms of a particular behavior of the solu-
tions of the TAP equations.
The objects of interest of the present approach are sums
over TAP states, multiplied by some weight function, typi-

The saddle point Equatiof89), substituting Eq(42) into it, cally of the forme?UF(™_Wwe make the hypothesis that the
admits a solution foB=0 (see Appendix A for detai)s In

Sec. Il A we recall that a general criterion, formulated by

2
7 2
)\—8uq. (47

"BM ——

Plefka®® can be applied as mecessancondition to select 005 | BRST ——— |
physically relevant solutions. We anticipate that this criterion statie
requiresB=0, so that Eq(46) becomes a condition fok 004

alone.

In Figs. 1, 2, and 3 we show the behavior,Tat 0.2, of
both solutions, both versdsandu. The annealed complexity
computed over the supersymmetric solution goes to zero
smoothly asi—0~; it displays a maximum at somg,,, (or 002 1
fin, if the behavior versus free energy is consideradd
crosses thel-ax at someug such thatug<um.<0. Unlike 001 |-
2 (1), the curveX ,(f) is not univocal: it displays a cusp at
fi, (see Fig. 1 and then turns back. 0 TR . . . .
The other solution of the saddle point equations, which 02 015 -01 005 0 005 01 015 02 025
will refer to as the BM or BRST-SUSY-breaking solution, is v
the one introduced in Ref. 5. Such a solution does not satisfy |G, 3. complexity vsu (conjugated tof) for both saddle
relations(46) and (47), thus spontaneously breaking BRST points. The BRST-SUSY complexity displays a maximum below
SUSY; its dominion iru (or f) is broader than the one of the zero[corresponding to the cusp in thielominion (see Fig. 1]. It
symmetric solution, the maximum value &f, is for u=0, goes to zero asi—0. On the contrary the solution with broken
and, at any temperature, it is larger than the correspondestUSY has a maximum far=0.

174401-6
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set of solutions over which we perform the sums does not FP[ePUFM] |
qualitatively change adding a small magnetic field to a single “hah B(XiX;)- (55
spink. This means that each solutianwith associated mag- o

netizationgm;*} goes continuously to a new solution in pres-  jnder the hypothesis of E¢49), this must be equal to the

ence of the fielch,, defining the functiongm*(h,)}. following quantity:
Given a generic observable depending on the magnetiza-
tions, its white average—i.e., the average value that the ob- 1 52@BuUF(m®) 92F(m?)

1
servableg takes over each TAP solution—is given by I o = N 2 (BUW
s « ot s « (el

1
[9(M)]so= 17 2 9(m), (48) oF oy oF amg .
N, = i 202 ' 7 3| aBuF(m®)
s AU gmy oh; dmg oh; € ’
where N is the number of solutions we are summing over. (56)

We now assume tha&h) no solution bifurcates ang) no
new solution appears. This can take place either as a glob@lhere the second term is zero over any TAP solution and we
property of all TAP states or as a property of a restrictedare |eft with
subset of dominant states, selected according to their

weights. Under these hypotheses this means that we may FPF(m?) N —
write > Bu———ePFM) = Bu(yy). (57)
~ Jhioh,
1 .
[am(h)]so= 37 2 9M7(h). (49  Thus we obtain
s «
As a consequence, for amy the following relation holds: (XiX;) = u(i ). (58)

The previous BRST relations can be obtained under weaker
(500  conditions than those considered initially; in particular the
dh" above derivation still holds if we allow the onset of new
solutions, provided that they appeanly outsidethe en-
semble of dominant solutions: e.g., at the threshold. Indeed,
in presence of a weighe®“" (™ only solutions of a certain
free energy count, thus supporting our assumption that, in the
[ myeBuFm_ | dominion of interest, the total number of.statéé_,, does not
T:_<ka'>’ (51)  change. Instead, the condition of no bifurcation seems un-
k avoidable to obtain the BRST relations by means of this
where the average on the right-hand siB&lS) is computed  argument.
with respect to the actioB(x,m, ¢, ) [Eq. (17)]. However,
under the above hypothesis, this must be equal to the averageE. Identification of the BRST-SUSY solution with the static
on each solution of the derivative af,e®'™(™ with respect solution: Link with replica computation
to hy, which is

>

o

oh" Ns

We start considering(m)=m,e?"" (™ which is the average
of the magnetization with the weighe®F, used to count
solutions of a given energy. In general we have

Igmh)]se 1 2;‘ r?”g(mi“(h)).

In this section we very shortly recall the connection be-
tween the static solution at the one-step RSB approximation
)_ (520  and the BRST-SUSY solution &, (Ref. 13. We compare
results at given values of the breaking parametén replica
Jormalism and at given values of the variahle Legendre
conjugated of, in the framework of the annealed computa-
tion of the complexity.

T GBUF(M) SARSLLES
€ +m;5u
ahy I am® ohy

We can drop the second term since, by definition, it is zer
on the TAP solutions, and we are left with

(amf’ IF(m®) om

2 -1 The total replica free energy at one-step RSB is
i 2 XkleBUF(ma): i E L) eBUF(ma) p gy p
N % N Z Lom®om*] | P P
_ freP=— —-(1-2q;) — - [(1-m)ai+map]
=) (53 4 4
1
Thus we have - f Dzqn f Dz, pumzo.z), (59
= (M) = (), .
i.e., for k=1, the first Ward identity for BRST-SUSY sys-
tems, Eq.(19). To obtain the second Ward identity, EO), P1(M, Z0,2,)=[2 costi Bzo\do+ BZ1\/d1— o) ™.

we must apply the same procedure to the second derivative
of the quantityg(m) =e?"F(™ proportional to the complex-
ity. From Eq.(17) we have Self-consistency equations take the form
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QOZJ Dzo(tanh Bzo\ao+ Bz1 VA1 —o))2,  (61)

fh:f Dzo(tantf(Bzo\do+ BziVa1— o)), (62)

B 1
Z(0i—ad)+ Wf Dz, Inf Dz,p1(M, Zg,21)
_<|n pl(m!201zl)> :01 (63)
with
Jpzl("‘)pl(mrzoazl)
((--))= (64)

f Dz;p1(M,z4,27)

Leavingm as a free parametgthus ignoring Eq(63)], at a

PHYSICAL REVIEW B68, 174401 (2003
1
Ta(fiu,q)=ginps(f;u,q,A(u,q),M(u,9))
B 2
=ﬂu[—z[1—2q+(1+u)q ]
1
+ﬁlnf Dz[ 2 coshBz \q] U~ f . (69

It can be easily seen that, putting=0 in the replica free
energy, Eq(59), this is bounded to Eq69) by

2a(fiu,0)=pulfq, —u) — ] (70
provided that one makes the identification
m=-u, Q;=q. (7D

Furthermore, the saddle points of such a funcfiapcoin-
cide with those off™P, if the correspondencé™?(q,—u
=m*)=f holds at the static value of the breaking parameter

given temperature we can define the complexity of the sys™ i-€., m” satisfies Eq(63).

tem as the Legendre transform g f*P:

%(f)=ma{ gmf—gmfeAm)], (65)
m
with conjugated variablegm andf,
amfrep
f=—0 (66)
9% 6
pm=—. (67)

Equations(66) and (67) yield the relation betweehandm.

The identification in Eq(71) is evident for the overlam;
is the self-overlap of states in the replica 1RSB framework
and q is the self-overlap of TAP states; i.e., they are just
different representations of the same thermodynamic observ-
able. For what concerns the connection between the breaking
parametem and the variablel conjugated with the TAP free
energy, we can observe that the derivative with respefcoto
Eq. (69) gives

924

—2=—Bu.

af (72

Simply comparing this with Eq67) one can identify— Bu
aspm, the slope of the complexity as a function of the free

Introducing Eg. (66) in the Legendre transformation of energy. As a matter of fact we are just saying that &)

Bm{eP [Eqg. (65)] one can obtain the following relation:

frep

3,(f)=pm?

am m(f)

,32
= mA(af-ag)+ J Dz, In f Dzypy(M.29,21)

—(Inpi(m,z,21)) |, (68)

wherem=m(f).

In zero external magnetic fieldy=0. In this particular
case; represents the entropy dfidden statesthat we
would get with the method of then coupled real replicds

and a formal connection can be established between the com-

can be seen as the Legendre transform-ef3(1f"¢P) with
conjugated variables Bu andf.

Notice that, as a consequence of the link shown in Egs.
(70) and(71), the average defined in EG3) coincides with
the one defined in Eq64). Therefore we used the same
symbol.

The one-step RSB static solution is not thermodynami-
cally stable, as can be shown computing the Hessian of the
replica thermodynamic potential with respect to the order
parameters variations around their self-consistently derived
values, given by Eqg61) and(62). Indeed, the eigenvalue
associated with the overlap-overlap fluctuations—i.e., the
replicon—is

Ar=1-p¥costi *(8\a,2,)). (73)

plexity of the BRST-SUSY saddle point of the annealedUSing the identity cosi'=(1—tant?)? the stability condi-
computation and the one-step RSB replica free energy. Thigy, Ar>0 can be written as

was shown in Ref. 13Egs. (32)—(34)] but the formal con-

nection also holds in the original notation of Ref. 5.

Indeed, the expression of the annealed complexity ob-

tained simplifyingA and\ in the logarithm of Eq(29) by

means of the BRST relations, Eqg6) and(47), comes out

to be

T2>1-2q;+ (tanH(BVq121))- (74)

This is the analogous in the replica formalism of Plefka’s
criterion for the physical relevance of TAP solutidhgsee
Sec. Il A).
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0.04 ' ' ; ; ; - - - whereZ™" is the partition function ofhXm copies of the
system. In terms of the replicated matrix parameeits
00z 1 T average is
po° BRST —— | i B 22
;;E wotic Z™=extpexpl N Z(mn—TrQ )
= 002} E
\%
+ " B .
004 | ™, - +n exp(— > Qfosat| . (78
\*\‘ {O'C} 2 ab,cd
. a
-0.06 ‘x E . .
" where the indexes,b=1,...n while c,d=1,...m. The
008 A S four-index matrixQSY can be expressed as the composition
02 015 01 005 0 005 01 0I5 02 025 of n? submatrice®,;, of dimensionmx m of the form
u
FIG. 4. The quantityT?—((1—m?)2) is plotted vsu. Following y my
the Plefka’s criterion, if such a quantity is positive, the solution is Q+ 0
physically meaningfulsee text for detai)s otherwise it is not. In ab:( ab “b) 7
the case of the BRST solution, it coincides with the repli¢sta- Ouw Qu (77)
bility eigenvalue of theq, fluctuations in the one-step RSB static
solution with no external field which we plot with asterisks. From
the plot one can see that Plefka’s criterion is satisfied only by theThe matricesQ>, are further parametrized as
BM solution. This means that if the annealed approximation in the
complexity computation would be a reliable one, and if no further Ass  Cap
inconsistency would arise, the physically relevant saddle point over Q;b: Qab_—a + —az (78
which it should be computed would be the one breaking the BRST y 2y
SUSY.

Furthermore iQS¢=0. In Ref. 6 the last term waB,,/y>.

As we can see from Fig. 4, the replicon of the one-step/Vé Write C,,=2B,;, both in order to avoid confusion with
RSB solution at zero magnetic field, as a functionwf the parameteB in the> , expression of Sec. Il and to obtain
= —m, is always negative in the dominion where the com-MOre symmetric expressions in following works.
plexity is positive, even on the “static” point,=f(m*). Equatlon(75) is, then, cqmputed making use of the above
From the same figure, though, we observe that the equivale@'Satz, getting a complexity that can be formally connected
quantity computed over the BM saddle point of the annealed® the one of Bray, Moore, and Young, Ref. 20 through a
complexity is such that Plefka’s criterion is always satisfied 9/Ven chanﬁge of variables. We will analyze it more explicitly
This is a necessary condition supporting the possibility thaflsewheré, where we will use such transformation.
the BM annealed complexity could represent the number of For the time being we are mostly interested in the an-

states of the SK model, yet not a sufficient one, as we wilealed case, which can be obtained putting in ma#t# all
see in Sec. Ill. Q.p With a#b equal to zero. The ansatz reduces, then, to

considern diagonal blocks ofmXxXm matrices(77), for b

=a, where the elements are built witQ,,=Q, A=A,

C.a=C. In this case, the change of variables we need to
In Ref. 8 Bray and Moore introduced theo-group an-  connect the BM formulation of the annealed complexity to

satzin order to solve the instability problem of the replica the Parisi-Potter$PP one i$’

symmetric solution of the SK model. In Ref. 7 Monasson

F. Two-group ansatz breaks the BRST SUSY

showed how the formalism of Legendre transforms can be BM PP
applied to mean-field disordered models throughgimaing q=0, (79
of real replicasin a configuration space extendedmaopies m
of the system. _ i
Parisi and PottePsexplained how the BM action can be A=|AF 2 Q)' 80
obtained through the method of Monasson provided that the 2 m2
symmetry between real replicas is broken according to a gen- A= > C+mA+ TQ) , (81
eralized two-group ansatn being the number of replicas
introduced to compute the quenched averéghkowing the u=-—m.
standard scherfi€® and m the number of real copies, they . , _ o
analyzed Writing the equations with the substitutiofig9)—(81) al-

lows for an immediate connection between breaking the ma-

1 trices structure into two groups and breaking the BRST
lim =InZ™=ext[In p<(f)—mABNT], (750 SUSY. Indeed, Eqs80) and (81) transform into the BRST
n-o N relations(46) and(47) if we setA=C=0—i.e., if we do not
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break the matrix structure at allinbroken two-group On The effects of neglecting the sign of the determinant of

the contrary, setting values & and C different from zero the TAP solutions, which is at the origin of the BRST susy,
amounts to breaking the BRST symmetry and leads to valuesre particularly dramatic when we sg£0. In this case we

of g, A, and\ independent among each other: i.e., to the BMare summing over each extremum of the TAP functional with

solution. a weight given by the sign of its determinant. The Morse

theorem tells us that this quantity is a topological invariant

and it is equal to 1 in this specific case. While the BRST-

IIl. PROPERTIES OF THE ANNEALED COMPLEXITIES SUSY solution does satisfy the theorem, the BRST-SUSY-

In the previous part of the paper, we have studied thdré@king saddle point yields a quantity of or@dFevs-1, if
so-called BM complexity (the one breaking the supersym- >eu=0-

metry) and the BRST-symmetric complexifyas two differ- A first way to recover mathematical consistency in the
ent solutions of the same saddle point equations, derived O case is to guess that BRST SUSY is restored—e.g., be-
from the same BRST-SUSY functionalee Sec. Il B cause the prefactor of the exponentiagis\>em. In this case

In this section we will discuss several issues connected té1€ expansion of the prefactor in powers oNMill be zero
the problem of selecting a proper, physically meaningful,at all orderssuch as the expansion ef * in powers ofx).
complexity and to see whether any of the two candidated his series was considered by Kurchan in Ref. 19 where it is
fulfill the minimal requirements. shown that its coefficients are indeed all null. This proves
We start noticing that not all TAP solutions can be assothat the BM saddle point is possibly mathematically consis-
ciated to stable thermodynamic states. They have first to satent but raises another difficulty. We already stressed that at
isfy the Plefka’s criterior(see below, which guarantees the the order it is not possible to prove whether the BM com-

right expression for the linear susceptibility of the states unPlexity is counting only minima or not. When computing the
der consideration, and, then, to be minima of the TAP freecorrections without a modulus of the determinant of the Hes-
energy functional. sian one seems to have a vanishing prefactor, though. Indeed,

Operationally speaking, what happens is that, even if orft this stage, in order to accept the BM prediction, we must,
physical grounds we are willing to count only the minima of then, assume that the effect of taking the modulus of the
the TAP free energy, in practice, we also count other kinds ofl€terminant into account is to change the value of the pref-
solutions of the TAP equations. As a consequence, it magctor from exponentially small to finite, a completely unjus-
happen that we have a mathematically correct computatiotfied assumption at the present state.
which, however, has no physical meaning at all or a rather
obscure one. In Sec. Il A we will see that, at the present A. Plefka’s criterion

stage, we have no way to state that any of the two solutions In this subsection we recall the results of Ref. 28 on the

of th? complex_lty saddle point equations correspond toproperties of the Hessian of the TAP free energy on a generic

counting only minima of the TAP free energy. On the_ Othe.rconfiguration{mi}, which is also the inverse of the suscep-

hand, though it is just a necessary condition, a partial d'sfibility matrix:

crimination can be done on the basis of Plefka’s criterion,

which is satisfied by the BRST-SUSY-breaking solution but %F o M)

not by the BRST-SUSY solution. Xﬁl:m' (82)
Since the BRST solution can be linked to the saddle point e

solution obtained in a 1RSB replica computation in zeroThe problem is studied considering the resolvent of the Hes-

magnetic field, it is natural to check its stability according tosjian. As a by-product of the computation one obtains the

the usual criteria in that framework—e.g., the positivity of magnetic susceptibility of a solution. On physical grounds

the replicon eigenvalue; however, as we anticipated in Seghis must be equal t#(1—q); however, it turns out that not

Il E, this condition is formally identical to the Plefka crite- all TAP configurations satisfy this relation. Instead the con-

rion, which is, therefore violated by the BRST-SUSY solu- dition for a TAP solution{m;} to yield the right physical
tion. This violation leads to a mathematical inconsistency, agusceptibility is

we show in Sec. Il A.
The BRST supersymmetry is a property of the action and, 1

therefore, its violation poses a consistency problem to the Xle_IBZN EI (1—mi2)2>0. (83
BM saddle point, too, due to the lack of control on what we
are counting. The only possibility for the BRST-SUSY- The TAP solutions which do not satisfy the previous relation
breaking saddle point to be valid is to guess that it countgurn out to have the following nonphysical susceptibility:
only the minima, as it is claimed in Ref. 18. It would de-
scribe only a physically stable portion of the set of TAP . Xp
solution and we would not expect that it satisfies global X'_ﬂ(l_qHH’
properties valid on the whole set, such as the Ward identities ) .
derived from the BRST SUSYsee Egs.(19) and (20)].  Wherep is defined as
However, this assumption is hard to justify, as we will dis-
cuss in the Secs. Il B and Il C, recalling the properties of — 3& —m2)\3

. the p! p=p>5 2 (1-m?)> (85
the Hessian of the TAP free energy as derived in Ref. 28. N 5

(84)
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Therefore, after having computed the complexity, we must C. Determinant of the Hessian

check that the Plefka relation is verified to be sure that we aq\ye have previously discussed, the fact that no negative
are counting physical solutions. eigenvalue exists in an extensive quantity does not mean that

For N—o, the site average becomes, in the notation Ofgaqdles and maxima do not exist, which is indeed impossible

the annealed computation of Sec. Il C, the average of E¢y, tonological grounds. Therefore, the conditior=0 does
(83)d0ver the actionZ [Eq. (45)] and the above inequality ot pypass the problem of the sign of the determinant of
reads -1

X -
) 4 In Appendix A the determinant is computed making use of
1-p%(1-29+(m%))=0. (86) Grassmann variables and using the saddle point method. If

As we can see from Fig. 4 such a condition is satisfied by the"'e evaluates the saddle point oBbefore evaluating the

. . S integrals over then; , it turns out that there are two solutions
saddle point breaking the BRST SUSY, but is violated by theB:g andB>0 (B Iis the parameter originally used by Bray
BRST-invariant one. In the replica language E86) is the

replicon. The identification of the measures over which thegﬂi% r':/l]% cr)rtéhoé' gagglio’c:i?:te ;? lttgli(rera:&:x?%sgﬁsotfhﬁmgoigt_e-
average is performed is given by Eq469)—(71). P g

) 4 . _grand on the integration path and is the correct one, while if
As we show in Appendix B, the computation of the deter x»<0, the correct solution is the one wiB>0.

minant of the Hessian, which is a crucial step in the deriva- .
tion of the action, is deeply connected to the Plefka compus: Both the BRST-SUSY and the BRST-SUSY-breaking so-

tation of the resolverf® As a consequence, one sees that, inggltzrr]rsnﬁ:nl{[rgi gr:]?;e(?sisi?nn(S)??rl::rjlfkllifr:‘fe‘zxgr:ee?smgg;%ees
order to set the parametBrof the determinant equal to zero, 9y

as was chosen in both solutions, one must check that the
Plefka criterion is satisfied. Therefore, the fact that the W:H
BRST-SUSY solution violates it turns out to be not only a i
problem of physical meaning, but also a problem both for the
replica computation and for the mathematical consistency opince the prefactor is positive for afyn;} configuration,
the solution. this choice ofB would providean a posteriorijustification

We conclude stressing that although the annealed compiior neglecting the absolute value of the determindrthe
tation is well defined on mathematical grounds, what reallycalculation were exacat all orders inN. Anyway, we cannot
matters for physics is the quenched computation where thigeglect the fact that all computations are performed at the
problem can possibly be cured considering a full-RSBleading term inN, asN— 2, thus ignoring all subextensive
BRST-SUSY solution. As we will see, this certainly happenscontributions.
at the lower band edge of the quenched complefthig free As a matter of fact, the sign also depends on neglected
energy value at which the complexity vanisheghich, as  Pprefactors
expected, coincides with the equilibrium free energy given
by the Parisi solution and it is BRST symmetric. dety "= a(N)dety Y5, (89)

1 1 2
Em)eXF{N%(l—Q)Z]. (88)

_ wherea(N) cannot be determined at the leading ordeNjn
B. Spectrum of the Hessian ofF o,({m}) but needs to be obtained from correctionsQifl):

The spectrum of the eigenvalues of the inverse suscepti-
bility matrix x~(m) on a generic configuratiofm;} is de-
termined in Ref. 28 for small eigenvalues and in the region
of {m} configurations such that-=0. The eigenvalue distri-
bution is written, at the leading order M, as”® While the magnitude of the determinant is not qualitatively

changed byO(1) correctiondprovided they are not zero, of

1 2 course, its sign can well be determined by eigenvalues that
p(\)=—=\/A———, [xg/<1, A<1. (87) are presentin a subextensive quantity.
77\/6 4p

D. Bray-Moore-Young FRSB quenched complexity
is BRST invariant

1_

1Id - 1Id -1 1I N 90
Nn ety —Nn ety +Nna( ). (90

sp

The minimum of the spectrum is therefore positive, irrespec-
tive of the value ofxp, implying that the TAP free energy is
semiconvex everywhere at the extensive level. In the same Both the BRST-SUSY and BRST-SUSY-breaking solu-
paper this result was proved rigorously also for generic contions give a lower band eddéhe free energy value at which
figurations with a finitexp, either positive or negative. We the complexity vanishedlifferent from the equilibrium free
remark that this result, howevadpes not exclude the exis- energy of the SK model. This is not surprising since we are
tence of solutions with a subextensive number of negativeerforming annealed averages, while we expect that the
eigenvaluesActually, the Morse theorem implies that these physically correct computation is quenched.

solutions do exist and, indeed, there must be an equal num- In order to cure this deficiency it is rather obvious that
ber of solutions with positive and negative determinantsone has to go on computing the quenched complexity in the
Plefka’'s result just states that we cannot distinguish them &tull RSB scheme, for which the SK model is known to be
an extensive level. thermodynamically stable. The quenched case is formally
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discussed in Ref. 23, and one instance of FRSB quenched In order to determine which one, if any, of the two pro-
complexity is presented in Ref. 16. The first step in thisposals was the one actually representing the multiplicity of
direction, however, was performed by Bray, Moore, andstable and metastable states of the Sherrington-Kirkpatrick
Young in Ref. 20 where the solution there analyzed had anean-field spin-glass model we have been critically review-
lower band edge coinciding with the FRSB static one. Now,ing the properties of both, sometimes solving apparent incon-
we notice that the assumptions under which they look folgryencies, other times pointing out substantial inadequacies.
such a solution are exactly the BRST relati¢46) and (47) We first summarize the case of the BM BRST-SUSY
generalized to the function order parameters one has to itgreaking annealed complexity. The BM saddle point is not
troduce in the quenched FRSB scheme of computation. SINGBRST SUSY at any value aof, while we have shown in Sec.
we are using their very same notation, we can directly req|| that the BM action satisfies such a supersymmetry, al-
write here Eq(19) of Ref. 20, which we break into two lines  though this is differently expressed in the BM notation with

2 respect to the one of Ref. 13. As already noticed by Kurchan

A=—p(1), A= B—uquA, (91) in Ref. 19, we have to be careful and we need some justifi-

8 cation before adopting it, if we want to preserve mathemati-

: L cal consistency. In particular, one may show that the BRST
g)nrdthe diagonal parthe one surviving in the annealed case SUSY is restored considering subextensive corrections to the
saddle point and notice that they amount to a prefactor of

2 2 exp(N2gy). Inthe casai=0, it has been shown by Kurchan
p(X)=Z-ug(x), ﬂ*(X)=ZUZQ(X), Vxe[0,1], by means of a series expansion in power dfl that the

(92) prefactor of the non-BRST saddle point is zero at all orders
of the expansion. This could imply a zero prefactor or it
for the off-diagonal elements. The further assumption wasgould leave the way open to a nonzero but exponentially
then, made: small prefactor. Both outcomes, however, strongly change
the BM prediction. Therefore, to save this prediction, one
q(1)=dea- (93) should show that the effect of keeping the modulus of the
The relations expressed in E(1) [inserting assumption determinant amounts to changing the prefactor from an ex-
(93)] are exactly our Eqg46) and(47). The same holds for Ponentially small value to a finite one. A step in this direction
the off-diagonal terms if we recognize that, in £g2), the ~ could be poss@ly done generalizing the technique of Ref. 32
off-equilibrium analog ofA is — p(x) and the analog of is  for one-dimensional random systems.
7*(x)/2. What was found is, then, the quenched improve- Very recently, in Ref. 18, it was claimed that the BM
ment of the annealed BRST-SUSY solution and not thesaddle point counts only minima. This would imply that the
quenched analogue of the BM annealed solution of Ref. 5c0mplexity does not involve a sum over all solutions and,
for which the above-mentioned relations do not hold. More-therefore, is not constrained to satisfy global relations, like
over, the choice of identifying the element$1) of the di-  those imposed by BRST SUSY or by the Morse theorem.
agonal block of the FRSB matrix with the elements on theHowever, there is no proof at all that the BM saddle point
diagonal,qe,, leads precisely to the self-consistent, stablecounts only minima, since Plefka’s analysis of the Hessian
Parisi solution of the SK modéf.In such a case, though, no Shows that all solutions of the TAP equations have strictly

parameter is left free to vary and, therefore, no analysis ovePositive eigenvalues only at leading orderNnIn order to
the number of states at givencan be performed; i.e., no 9etinformation about the sign of the determinant one should

complexity can be built. be able; to'select 'Fhe minima among all states satisfying !DIef-
It is the subject of another papg€to go beyond this point ka's criterion. This can be explicitly seen in the spherical
and look for a generalized solution that allows a “quenched?SPin models where these solutions can be classified as
probe” in a free parametefthe state free energfor the ~ Minima and saddles, differing only for one negative eigen-
generalization of then parameter in the Legendre transform Value. The Plefka criterionp=1—8%(1—2q+ LNZ;m{)
approach, yet recovering the right equilibrium value as >0 is, thus, not related to the fact that a given solution is a

lower band edge of the complexity. minimum or a maximum or a saddle but rather it guarantees
that it yields the correct susceptibility.
IV. CONCLUSIONS The lower band edge of the quenched complexity, com-

puted with the Parisi ansatz by Bray, Moore, and Yotfhg,

In this paper we have shown that the BM actiamd the  gives the correct equilibrium free energy but such solution is
action considered by Cavageaal*® are completely equiva- not a modification of the BRST-SUSY-breaking annealed so-
lent and one can move from one to the other through dution of Bray and Moorée.On the contrary, it turns out to be
simple change of variables. This is also true at the microBRST symmetric, as we have shown in Sec. Il D. This also
scopic level, thus implying that the BM action too is BRST- means that, up to now, no quenched extension of the BM
SUSY invariant. In particular, this equivalence implies thatannealed saddle point has been taken into account. We will
each solution of the BM saddle point equations is a solutiorshow elsewhere what are the minimal assumptions to break
of the equations of Ref. 13 as well and vice versa. As ahe BRST SUSY in the quenched ca8e.
consequence we are left with the problem of selecting the Furthermore, the non-BRST solution is not in agreement
“right” solution. with the numerical results recently obtained by Plefka
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through some modified TAP equatiotisBy means of its proaches are currently under investigation, together with the
method he obtains all the minima of the standard TAP freestudy of the quenched BRST solutith.
energy satisfyingxp=0. The special set of solutions he
collects—i.e., the minima witlxp=0—is precisely the set ACKNOWLEDGMENTS
that is supposed to be counted by the BM complexity. Now,
the BM solution predicts that the great majority of solutions We thank A. Cavagna, I. Giardina, E. Trevigne, and A.
has a value ok, e.g., at temperatur&€=0.5 given byx,  Annibale for many useful discussions.
=0.132408-0 (2gy=0.002775) and atT=0.2 by X,
=0.5952975-0 (2py=0.05219). Plefka, however, on the  AppeNpix A:  THE DETERMINANT OF THE HESSIAN
basis of |t.s numencal data, hints that' aI.I the minima of the OF THE TAP FREE ENERGY
TAP functional in the thermodynamic limit have a zegpas
N—o. Moreover, the range of free energy values over The inverse susceptibility matrix is
which the complexity is nonzero does not sensitively change
with increasingN. This finding is also in agreement with X| —Jijtad, (A1)
what has been found at the FRSB level of computation, as
will be discussed in Ref. 16.
Notice also that the BM result forp cannot be changed a= 1 1 +,3(1 q)+0
considering the quenched average instead of the annealed ' ,8 1-
one. In Ref. 5 also the replica-symmetric quenched complex-
ity was considered and there the authors showed that thehere theJ;; are distributed according to
annealed and the quenched non-BRST saddle points coincide

at u>u.(u.,<0) and, in particular, au=0 to which the 'N 22N
P(J|J) Z_EX[{ )

1
) (A2)

highest number of solutions would correspond if the modu-
lus of the determinant of the Hessian was taken into account.

It is worth mentioning, anyway, that the zero-temperature
limit of the BM total complexity coincides with the compu-
tation of the number of solutions of the zero- temperaturén the following computation.
limit of the TAP equationsm;=sgn(;;J;;m;), where no The determinant can be written with the help of Grass-
reaction term is presefit??If the coincidence of the ex- Mann variables 4, 7) as
actly zero-temperature behavior with tlle—~0 behavior
would be a necessary condition, this would be a strong hint N _ _
that the BM saddle point provides, indeed, the right com-  dety *= | [ dn dﬂieXD{Z ﬂixﬁlﬂj]
plexity. However, we notice that this does not exclude the =t N
existence of other solutions displayingTa~0 limit of the N . . L
complexity different from the value directly computed Tat = H dw; dniexp{ —2 Jij (i + mmi)
=0. For instance, in th@-spin spherical model, a whole =1 =]
branch of TAP solutions existing at zero temperature disap- o
pears as soon as we infinitesimally heat the sy3tdsee +> 7ia; niJ. (A4)
also the Appendix of Ref. 35 !

Looking at the other solution, we observed that the BRST-
SUSY saddle point does not yield a proper result either. In-
deed, it counts TAP solutions that do not satisfy the Plefka
criterion—i.e., solutions not corresponding to physical statesdety ~*

Furthermore, even its mathematical consistency is doubtful, N 1

since it is obtained setting=0 (see Appendixes A and)B _ o _ -
and, according to Plefka’s analysis of the resolf&rf, this _f .1:[1 dn dﬂ'eXp[ 2N ( 2
assumption is only justified kp>0, while for xp<0 a so- N

lution with B#0 must be considered. It may happen that, = dwe W2

upon passing to the quenched computation, the violation of . \/— H d; d”'

the Plefka criterion of the BRST solution may be cured. Cer-
tainly this happens at the full-RSB lower band edge, which, — .

as we said above, is BRST supersymméettic. Xexp[ EI 77i('W"'3‘i)’7i]

In order to solve the problem of selecting a meaningful
complexity one can still try to generalize the proof of dweWN/2
Kurchart® to arbitraryu, possibly using a procedure not in- f
volving a series expansion inNl/and/or look for a quenched
FRSB solution breaking the BRST SUSY, thus solving a Pa-
risi equation like the one of coupled replicas investigated in _f
Ref. 37 but with a different boundary condition. Both ap- —o 271N

(A3)

As is usually done, we will not consider terms of ordeN 1/

Its average over the disordered interaction is

3 wan|

exp[ > In(iw+a )]

exd NH(w)], (A5)
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2 -mf)3
H(W)E_W—+%2 In(iw+a;). (A6) ivg A [1+i(1,8(TI )mz)]z
7 i v — I

To compute the integral for larghl we make use of the iy must be real and positive. In order to go back to the BM
saddle point approximation, thus evaluating the solution of notation we define the real variabR=iv . If B>0, the
stationary poinB=iv* 8 is a maximum oH. Inserting such

5 >0, (A14)

oH 1 [ iti i i
A Wil E _ 0, (A7) a positive value into the saddle point, E4.10), one gets the
oW N 5 iw+a; inequality
2 1-m?)?  p2
9*H 1 1 1:/3_2 (—'<_2 (1—-m2)2
—=—1+— ——<0. A8 N 4 -m3) N 4 e
aw? N T (iw+a)? (A8) " 1+B(1-m) '

(A15)
The second inequality is a condition that in most cases eng, ;g violating Plefka’s criterion.

sures that the integration path can be modified in order 10 gmmarizing, if the Plefka criterion is satisfied, the cor-
cross the saddle point in the proper way and is analogous Q.. so|ytion isB=0, while if it is not satisfied, one must
the maximum condition of the Laplace method. Chandmg  .qose the solution witB>0. Therefore, if one sets priori

in B=0, then one must self-consistently check that the Plefka
1 criterion is verified. Therefore, from this point of view, the
Lo _ BRST solution is mathematically inconsistent. The Plefka
iv=iw+B(1l-q)=iw+a,— — A9 o . . ) S
v A(1-q) ' B1- mi2 (A9) criterion arises as a condition to determine which is the cor-
_ . - _ rect solution of the resolvent equation; the fact that it is also
the stationarity condition for the saddle point reads the condition for determine the correct saddle pointBpas
) we derived above, is not surprising; indeed the two compu-
B? (1-mf)? tation are intimately related as we shown in the following
v[1-=> ———————1[=0 (A10)  ppendix
N T 1+ivp(1-md) ppendix.
and the condition foH becomes APPENDIX B: IDENTIFICATION OF det x~! SADDLE
X - POINT EQUATION AND RESOLVENT EQUATION
(1-mp) FOR y~
1- % > . . —>0. (A11) X
T [1+ivp(1—mi)] In this appendix we would like to stress the analogy be-

tween the saddle point equation fav=—i[B/8+ 8(1

The saddle point equatiofd10) has two solutionsv =0, —q)] (see Appendix Aand the equation for the resolvent of

v=v"#0. the inverse susceptibility. Using the notation of Ref. 28, the
resolvent is
1. Solutionv=0
In this case Eq(A1l) simplifies to 1 1 1 1
CI( ) p R(Z) =—Tr = —Tr s (Bl)
IBZ N Z_)(_l N Z_J_ai
242
1- N Z (1-mp)=>0. (A12)  \yhere the resolvent equation is
This is exactly Plefka’s criterion characterizing a physicall 1 1
d Ui RD=5 > (B2)

relevant solution. The stationary value=0 is a maximum
of the exponenH and corresponds to TAP solutions yielding

the physical expression of the linear susceptibility. and the condition IfR(z) ]>0 must hold for Img)<O0.
We notice that Eq(B2) evaluated ire=0 is identical to

Eq. (A7) in Appendix A provided the transformation
R R(0)]=iw is performed. Conversely the condition
For such a saddle point E¢A11) can be written as Im[R(z)]>0 for Im(z)<0 is equivalent to Eq(A8). Indeed
the derivative of the resolvent comes out to be

T z-R(z)—a

2. Solutionv=v"*

i (1-mp)?
N T 1+ivB(1-md) R___YD (B3)
- 0z 1-Y(2)’
: (1—my)
+|Ué > _ ———>0, (A13)
N T [1+ivB(1-m?)]? _ 1 1
' Y@=y - . (B4)
. ) . T (—z+ +a
of which the first two terms cancel each other. Simag " (CzZHR@ra)
<1 always, this implies that in order to have The functionY(z) is always positive, for any rea
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If we expandR(z) around a given real value af= z; for
a small negative imaginary partie, we get

drR
1——

R(ZR_iE):R(ZR)_iE Y(ZR) dz

) . (BY)

Thus, the condition on the imaginary partiRfz) for nega-
tive Imz (Pastur theorei® reads

) drR
lim ImR(z)=€¢ lim Y(z)(l—a)>0, (B6)

Imz—0"— Imz—0—

leading to the condition

PHYSICAL REVIEW B68, 174401 (2003

—dR 1 B7
@z =T (B7)
Imz=0
Equation(B3) evaluated az=0 satisfies conditior{B7) if

Y(0)<1.

If we setR(0)=iw, Egs.(B2) and (B7) evaluated atz
=0 are equivalent respectively to Eq&7) and (A8), thus
legitimating this last equation as a validity condition for the
saddle point oH(w).

The resolvent equation has two roots, which, for srzall
and in the region wherg?(1—2q+(m*)=1, were evalu-
ated, e.g., in Ref. 28. They correspond to B¢ 0 andB
>0 solutions of the previous section. The condition
IM[R(z)]>0 for Im(z) <0 selects one or the other solution
depending on the value @f inasmuch as the conditiq8)
selects the correct solutidd=0 or B>0 depending on the
value ofxp.
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