12,051 research outputs found
Interplanetary space-A new laboratory for rarefied gas dynamics
Interplanetary space provides simultaneously the best vacuum available to man and, because of the solar wind, a tenuous and unsteady high-speed outflow of predominantly hydrogen gas from the sun, a remarkable variety of rarefied gasdynamics phenomena, to observe. A review is provided of these phenomena, and of the way in which the present level of understanding has been achieved
Combining visible and infrared radiometry and lidar data to test simulations in clear and ice cloud conditions
Measurements taken during the 2003 Pacific THORPEX Observing System Test (P-TOST) by the MODIS Airborne Simulator (MAS), the Scanning High-resolution Interferometer Sounder (S-HIS) and the Cloud Physics Lidar (CPL) are compared to simulations performed with a line-by-line and multiple scattering modeling methodology (LBLMS). Formerly used for infrared hyper-spectral data analysis, LBLMS has been extended to the visible and near infrared with the inclusion of surface bi-directional reflectance properties. A number of scenes are evaluated: two clear scenes, one with nadir geometry and one cross-track encompassing sun glint, and three cloudy scenes, all with nadir geometry. <br><br> CPL data is used to estimate the particulate optical depth at 532 nm for the clear and cloudy scenes and cloud upper and lower boundaries. Cloud optical depth is retrieved from S-HIS infrared window radiances, and it agrees with CPL values, to within natural variability. MAS data are simulated convolving high resolution radiances. The paper discusses the results of the comparisons for the clear and cloudy cases. LBLMS clear simulations agree with MAS data to within 20% in the shortwave (SW) and near infrared (NIR) spectrum and within 2 K in the infrared (IR) range. It is shown that cloudy sky simulations using cloud parameters retrieved from IR radiances systematically underestimate the measured radiance in the SW and NIR by nearly 50%, although the IR retrieved optical thickness agree with same measured by CPL. <br><br> MODIS radiances measured from Terra are also compared to LBLMS simulations in cloudy conditions, using retrieved cloud optical depth and effective radius from MODIS, to understand the origin for the observed discrepancies. It is shown that the simulations agree, to within natural variability, with measurements in selected MODIS SW bands. <br><br> The impact of the assumed particles size distribution and vertical profile of ice content on results is evaluated. Sensitivity is much smaller than differences between measured and simulated radiances in the SW and NIR. <br><br> The paper dwells on a possible explanation of these contradictory results, involving the phase function of ice particles in the shortwave
The Martian bow wave - Theory and observation
Relationship between Mariner 4 space probe trajectory and calculated location of proposed Martian bow wav
Sharp measure contraction property for generalized H-type Carnot groups
We prove that H-type Carnot groups of rank and dimension satisfy the
if and only if and . The latter
integer coincides with the geodesic dimension of the Carnot group. The same
result holds true for the larger class of generalized H-type Carnot groups
introduced in this paper, and for which we compute explicitly the optimal
synthesis. This constitutes the largest class of Carnot groups for which the
curvature exponent coincides with the geodesic dimension. We stress that
generalized H-type Carnot groups have step 2, include all corank 1 groups and,
in general, admit abnormal minimizing curves.
As a corollary, we prove the absolute continuity of the Wasserstein geodesics
for the quadratic cost on all generalized H-type Carnot groups.Comment: 18 pages. This article extends the results of arXiv:1510.05960. v2:
revised and improved version. v3: final version, to appear in Commun.
Contemp. Mat
Simulation of time evolution with the MERA
We describe an algorithm to simulate time evolution using the Multi-scale
Entanglement Renormalization Ansatz (MERA) and test it by studying a critical
Ising chain with periodic boundary conditions and with up to L ~ 10^6 quantum
spins. The cost of a simulation, which scales as L log(L), is reduced to log(L)
when the system is invariant under translations. By simulating an evolution in
imaginary time, we compute the ground state of the system. The errors in the
ground state energy display no evident dependence on the system size. The
algorithm can be extended to lattice systems in higher spatial dimensions.Comment: final version with data improvement (precision and size), 4.1 pages,
4 figures + extra on X
Quantum Interference Effects in Spacetime of Slowly Rotating Compact Objects in Braneworld
The phase shift a neutron interferometer caused by the gravitational field
and the rotation of the earth is derived in a unified way from the standpoint
of general relativity. General relativistic quantum interference effects in the
slowly rotating braneworld as the Sagnac effect and phase shift effect of
interfering particle in neutron interferometer are considered. It was found
that in the case of the Sagnac effect the influence of brane parameter is
becoming important due to the fact that the angular velocity of the locally non
rotating observer must be larger than one in the Kerr space-time. In the case
of neutron interferometry it is found that due to the presence of the parameter
an additional term in the phase shift of interfering particle emerges
from the results of the recent experiments we have obtained upper limit for the
tidal charge as . Finally, as an example, we
apply the obtained results to the calculation of the (ultra-cold neutrons)
energy level modification in the braneworld.Comment: 12 pages, 2 figure
The Extragalactic Distance Database: Color-Magnitude Diagrams
The CMDs/TRGB (Color-Magnitude Diagrams/Tip of the Red Giant Branch) section
of the Extragalactic Distance Database contains a compilation of observations
of nearby galaxies from the Hubble Space Telescope. Approximately 250 (and
increasing) galaxies in the Local Volume have CMDs and the stellar photometry
tables used to produce them available through the web. Various stellar
populations that make up a galaxy are visible in the CMDs, but our primary
purpose for collecting and analyzing these galaxy images is to measure the TRGB
in each. We can estimate the distance to a galaxy by using stars at the TRGB as
standard candles. In this paper we describe the process of constructing the
CMDs and make the results available to the public.Comment: 8 pages, 5 figures, 1 long table, submitted to Astronomical Journa
- …