2,168 research outputs found

    On the optimization of a hybrid tuned mass damper for impulse loading

    No full text
    The present paper deals with the optimization of a hybrid tuned mass damper (TMD) in reducing the transient structural response due to impulse loading. In particular, a unit impulse excitation has been assumed, acting as base displacement, which is a situation that may occur in different real applications. The proposed hybrid TMD is composed of a previously optimized passive TMD and an added optimized active controller. Such configuration has been conceived in view of reducing both the global and the peak response. Especially on the latter task, the introduction of the active controller brings in a significant contribution. Prior, a bounded-input-bounded-output stability analysis on the control gains is developed. Different control laws have been investigated, assuming as primary structures, first a single-degree-of-freedom benchmark system and then a multi-degree-of-freedom building, in order to point out the most appropriate control law for the given structural context. In particular, a new control law, based on a linear combination of acceleration and velocity, allowed for remarkable peak response reduction. The achieved dynamic response exhibits a time settling weakly oscillating response, an indication of a stable behavior, and therefore represents a suitable option for the active controller, in view of various engineering applications

    Psychoacoustic Analysis of Synthesized Jet Noise

    Get PDF
    An aircraft noise synthesis capability is being developed so the annoyance caused by proposed aircraft can be assessed during the design stage. To make synthesized signals as realistic as possible, high fidelity simulation is required for source (e.g., engine noise, airframe noise), propagation and receiver effects. This psychoacoustic study tests whether the jet noise component of synthesized aircraft engine noise can be made more realistic using a low frequency oscillator (LFO) technique to simulate fluctuations in level observed in recordings. Jet noise predictions are commonly made in the frequency domain based on models of time-averaged empirical data. The synthesis process involves conversion of the frequency domain prediction into an audible pressure time history. However, because the predictions are time-invariant, the synthesized sound lacks fluctuations observed in recordings. Such fluctuations are hypothesized to be perceptually important. To introduce time-varying characteristics into jet noise synthesis, a method has been developed that modulates measured or predicted 1/3-octave band levels with a (<20Hz) LFO. The LFO characteristics are determined through analysis of laboratory jet noise recordings. For the aft emission angle, results indicate that signals synthesized using a generic LFO are perceived as more similar to recordings than those using no LFO, and signals synthesized with an angle-specific LFO are more similar to recordings than those synthesized with a generic LFO

    Clustering-Based Materialized View Selection in Data Warehouses

    Full text link
    Materialized view selection is a non-trivial task. Hence, its complexity must be reduced. A judicious choice of views must be cost-driven and influenced by the workload experienced by the system. In this paper, we propose a framework for materialized view selection that exploits a data mining technique (clustering), in order to determine clusters of similar queries. We also propose a view merging algorithm that builds a set of candidate views, as well as a greedy process for selecting a set of views to materialize. This selection is based on cost models that evaluate the cost of accessing data using views and the cost of storing these views. To validate our strategy, we executed a workload of decision-support queries on a test data warehouse, with and without using our strategy. Our experimental results demonstrate its efficiency, even when storage space is limited

    Challenges and opportunities of water quality monitoring and multi-stakeholder management in small islands: the case of Santa Cruz, Galápagos (Ecuador)

    Get PDF
    Sustainable water resources management roots in monitoring data reliability and a full engagement of all institutions involved in the water sector. When competences and interests are overlapping, however, coordination may be difficult, thus hampering cooperative actions. This is the case of Santa Cruz Island (Galápagos, Ecuador). A comprehensive assessment on water quality data (physico-chemical parameters, major elements, trace elements and coliforms) collected since 1985 revealed the need of optimizing monitoring efforts to fill knowledge gaps and to better target decision-making processes. A Water Committee (Comité de la gestión del Agua) was established to foster the coordinated action among stakeholders and to pave the way for joint monitoring in the island that can optimize the efforts for water quality assessment and protection. Shared procedures for data collection, sample analysis, evaluation and data assessment by an open-access geodatabase were proposed and implemented for the first time as a prototype in order to improve accountability and outreach towards civil society and water users. The overall results reveal the high potential of a well-structured and effective joint monitoring approach within a complex, multi-stakeholder framework.publishedVersio

    Annoyance to Noise Produced by a Distributed Electric Propulsion High-Lift System

    Get PDF
    A psychoacoustic test was performed using simulated sounds from a distributed electric propulsion aircraft concept to help understand factors associated with human annoyance. A design space spanning the number of high-lift leading edge propellers and their relative operating speeds, inclusive of time varying effects associated with motor controller error and atmospheric turbulence, was considered. It was found that the mean annoyance response varies in a statistically significant manner with the number of propellers and with the inclusion of time varying effects, but does not differ significantly with the relative RPM between propellers. An annoyance model was developed, inclusive of confidence intervals, using the noise metrics of loudness, roughness, and tonality as predictors

    Assessment of Climate Change Impacts in the North Adriatic Coastal Area. Part II: Consequences for Coastal Erosion Impacts at the Regional Scale

    Get PDF
    Coastal erosion is an issue of major concern for coastal managers and is expected to increase in magnitude and severity due to global climate change. This paper analyzes the potential consequences of climate change on coastal erosion (e.g., impacts on beaches, wetlands and protected areas) by applying a Regional Risk Assessment (RRA) methodology to the North Adriatic (NA) coast of Italy. The approach employs hazard scenarios from a multi-model chain in order to project the spatial and temporal patterns of relevant coastal erosion stressors (i.e., increases in mean sea-level, changes in wave height and variations in the sediment mobility at the sea bottom) under the A1B climate change scenario. Site-specific environmental and socio-economic indicators (e.g., vegetation cover, geomorphology, population) and hazard metrics are then aggregated by means of Multi-Criteria Decision Analysis (MCDA) with the aim to provide an example of exposure, susceptibility, risk and damage maps for the NA region. Among seasonal exposure maps winter and autumn depict the worse situation in 2070–2100, and locally around the Po river delta. Risk maps highlight that the receptors at higher risk are beaches, wetlands and river mouths. The work presents the results of the RRA tested in the NA region, discussing how spatial risk mapping can be used to establish relative priorities for intervention, to identify hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies.publishedVersio

    The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNA

    Get PDF
    BACKGROUND Small RNAs include different classes essential for endogenous gene regulation and cellular defence against genomic parasites. However, a comprehensive analysis of the small RNA pathways in the germline of the mosquito Anopheles gambiae has never been performed despite their potential relevance to reproductive capacity in this malaria vector. RESULTS We performed small RNA deep sequencing during larval and adult gonadogenesis and find that they predominantly express four classes of regulatory small RNAs. We identified 45 novel miRNA precursors some of which were sex-biased and gonad-enriched , nearly doubling the number of previously known miRNA loci. We also determine multiple genomic clusters of 24-30 nt Piwi-interacting RNAs (piRNAs) that map to transposable elements (TEs) and 3'UTR of protein coding genes. Unusually, many TEs and the 3'UTR of some endogenous genes produce an abundant peak of 29-nt small RNAs with piRNA-like characteristics. Moreover, both sense and antisense piRNAs from TEs in both Anopheles gambiae and Drosophila melanogaster reveal novel features of piRNA sequence bias. We also discovered endogenous small interfering RNAs (endo-siRNAs) that map to overlapping transcripts and TEs. CONCLUSIONS This is the first description of the germline miRNome in a mosquito species and should prove a valuable resource for understanding gene regulation that underlies gametogenesis and reproductive capacity. We also provide the first evidence of a piRNA pathway that is active against transposons in the germline and our findings suggest novel piRNA sequence bias. The contribution of small RNA pathways to germline TE regulation and genome defence in general is an important finding for approaches aimed at manipulating mosquito populations through the use of selfish genetic elements

    Scaling Computational Fluid Dynamics: In Situ Visualization of NekRS using SENSEI

    Full text link
    In the realm of Computational Fluid Dynamics (CFD), the demand for memory and computation resources is extreme, necessitating the use of leadership-scale computing platforms for practical domain sizes. This intensive requirement renders traditional checkpointing methods ineffective due to the significant slowdown in simulations while saving state data to disk. As we progress towards exascale and GPU-driven High-Performance Computing (HPC) and confront larger problem sizes, the choice becomes increasingly stark: to compromise data fidelity or to reduce resolution. To navigate this challenge, this study advocates for the use of in situ analysis and visualization techniques. These allow more frequent data "snapshots" to be taken directly from memory, thus avoiding the need for disruptive checkpointing. We detail our approach of instrumenting NekRS, a GPU-focused thermal-fluid simulation code employing the spectral element method (SEM), and describe varied in situ and in transit strategies for data rendering. Additionally, we provide concrete scientific use-cases and report on runs performed on Polaris, Argonne Leadership Computing Facility's (ALCF) 44 Petaflop supercomputer and J\"ulich Wizard for European Leadership Science (JUWELS) Booster, J\"ulich Supercomputing Centre's (JSC) 71 Petaflop High Performance Computing (HPC) system, offering practical insight into the implications of our methodology

    Control of hypothalamic-pituitary-adrenal stress axis activity by the intermediate conductance calcium-activated potassium channel, SK4

    Get PDF
    NON-TECHNICAL SUMMARY: Our ability to respond to stress is critically dependent upon the release of the stress hormone adrenocorticotrophic hormone (ACTH) from corticotroph cells of the anterior pituitary gland. ACTH release is controlled by the electrical properties of corticotrophs that are determined by the movement of ions through channel pores in the plasma membrane. We show that a calcium-activated potassium ion channel called SK4 is expressed in corticotrophs and regulates ACTH release. We provide evidence of how SK4 channels control corticotroph function, which is essential for understanding homeostasis and for treating stress-related disorders. ABSTRACT: The anterior pituitary corticotroph is a major control point for the regulation of the hypothalamic–pituitary–adrenal (HPA) axis and the neuroendocrine response to stress. Although corticotrophs are known to be electrically excitable, ion channels controlling the electrical properties of corticotrophs are poorly understood. Here, we exploited a lentiviral transduction system to allow the unequivocal identification of live murine corticotrophs in culture. We demonstrate that corticotrophs display highly heterogeneous spontaneous action-potential firing patterns and their resting membrane potential is modulated by a background sodium conductance. Physiological concentrations of corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) cause a depolarization of corticotrophs, leading to a sustained increase in action potential firing. A major component of the outward potassium conductance was mediated via intermediate conductance calcium-activated (SK4) potassium channels. Inhibition of SK4 channels with TRAM-34 resulted in an increase in corticotroph excitability and exaggerated CRH/AVP-stimulated ACTH secretion in vitro. In accordance with a physiological role for SK4 channels in vivo, restraint stress-induced plasma ACTH and corticosterone concentrations were significantly enhanced in gene-targeted mice lacking SK4 channels (Kcnn4(−/−)). In addition, Kcnn4(−/−) mutant mice displayed enhanced hypothalamic c-fos and nur77 mRNA expression following restraint, suggesting increased neuronal activation. Thus, stress hyperresponsiveness observed in Kcnn4(−/−) mice results from enhanced secretagogue-induced ACTH output from anterior pituitary corticotrophs and may also involve increased hypothalamic drive, thereby suggesting an important role for SK4 channels in HPA axis function
    corecore