287 research outputs found

    Milk Alternatives and Non-Dairy Fermented Products: Trends and Challenges

    Get PDF
    The growing prevalence of allergenicity towards cow's milk, lactose intolerance [...]

    Design of a "Clean-Label" Gluten-Free Bread to Meet Consumers Demand

    Get PDF
    The market of gluten-free (GF) products has been steadily increasing in last few years. Due to the technological importance of gluten, the GF food production is still a challenge for the industry. Indeed, large quantities of fat, sugars, structuring agents, and flavor enhancers are added to GF formulations to make textural and sensorial characteristics comparable to conventional products, leading to nutritional and caloric intake imbalances. The formulation of the novel "clean-label" GF bread included a commonly used mixture of maize and rice flour (ratio 1:1) fortified with selected protein-rich flours. Naturally hydrocolloids-containing flours (psyllium, flaxseed, chia) were included in the bread formulation as structuring agents. A type-II sourdough was obtained by using a selected Weissella cibaria P9 and a GF sucrose-containing flour as substrate for fermentation to promote the exo-polysaccharides synthesis by the starter lactic acid bacterium. A two-step protocol for bread-making was set-up: first, the GF sourdough was fermented (24 h at 30 degrees C); then, it was mixed with the other ingredients (30% of the final dough) and leavened with baker's yeast before baking. Overall, the novel GF bread was characterized by good textural properties, high protein content (8.9% of dry matter) and in vitro protein digestibility (76.9%), low sugar (1.0% of dry matter) and fat (3.1% of dry matter) content, and an in vitro predicted glycemic index of 85

    Recent Advances in the Use of Sourdough Biotechnology in Pasta Making

    Get PDF
    The growing consumers' request for foods with well-balanced nutritional profile and functional properties promotes research on innovation in pasta making. As a staple food and a common component of diet, pasta can be considered as a vector of dietary fiber, vegetable proteins, vitamins, minerals, and functional compounds. The conventional process for pasta production does not include a fermentation step. However, novel recipes including sourdough-fermented ingredients have been recently proposed, aiming at enhancing the nutritional and functional properties of this product and at enriching commercial offerings with products with new sensorial profiles. The use of sourdough for pasta fortification has been investigated under several aspects, including fortification in vitamin B, the reduction of starch digestibility, and gluten content. Sourdough fermentation has also been successfully applied to non-conventional flours, (e.g., from pseudocereals and legumes), in which an overall increase of the nutritional value and health-promoting compounds, such as a significant decrease of antinutritional factors, were observed. Fermented non-conventional flours, obtained through spontaneous fermentation or using selected starters, have been proposed as pasta ingredients. As the result of wheat replacement, modification in textural properties of pasta may occur. Nonetheless, fermentation represents an efficient tool in improving, besides nutritional and functional profile, the sensory and technological features of fortified pasta.Peer reviewe

    How Fermentation Affects the Antioxidant Properties of Cereals and Legumes

    Get PDF
    The major role of antioxidant compounds in preserving food shelf life, as well as providing health promoting benefits, combined with the increasing concern towards synthetic antioxidants, has led the scientific community to focus on natural antioxidants present in food matrices or resulting from microbial metabolism during fermentation. This review aims at providing a comprehensive overview of the effect of fermentation on the antioxidant compounds of vegetables, with emphasis on cereals- and legumes- derived foods. Polyphenols are the main natural antioxidants in food. However, they are often bound to cell wall, glycosylated, or in polymeric forms, which affect their bioaccessibility, yet several metabolic activities are involved in their release or conversion in more active forms. In some cases, the antioxidant properties in vitro, were also confirmed during in vivo studies. Similarly, bioactive peptides resulted from bacterial and fungal proteolysis, were also found to have ex vivo protective effect against oxidation. Fermentation also influenced the bioaccessibility of other compounds, such as vitamins and exopolysaccharides, enabling a further improvement of antioxidant activity in vitro and in vivo. The ability of fermentation to improve food antioxidant properties strictly relies on the metabolic activities of the starter used, and to further demonstrate its potential, more in vivo studies should be carried out.The research was supported by the Spanish Ministry of Science, Innovation and Universities (project RTI2018-099835-A-I00)

    Use of fermented hemp, chickpea and milling by-products to improve the nutritional value of semolina pasta

    Get PDF
    A biotechnological approach including enzymatic treatment (protease and xylanase) and lactic acid bacteria fermentation has been evaluated to enhance the nutritional value of semolina pasta enriched with hemp, chickpea and milling by-products. The intense (up to circa, (ca.) 70%) decrease in the peptide profile area and (up to two-fold) increase in total free amino acids, compared to the untreated raw materials, highlighted the potential of lactic acid bacteria to positively affect their in vitro protein digestibility. Fermented and unfermented ingredients have been characterized and used to fortify pasta made under pilot-plant scale. Due to the high contents of protein (ca. 13%) and fiber (ca. 6%) and according to the Regulation of the European Community (EC) No. 1924/2006 fortified pasta can be labelled as a "source of fiber" and a "source of protein". The use of non-wheat flours increased the content of anti-nutritional factors as compared to the control pasta. Nevertheless, fermentation with lactic acid bacteria led to significant decreases in condensed tannins (ca. 50%), phytic acid and raffinose (ca. ten-fold) contents as compared to the unfermented pasta. Moreover, total free amino acids and in vitro protein digestibility values were 60% and 70%, respectively, higher than pasta made only with semolina. Sensory analysis highlighted a strong effect of the fortification on the sensory profile of pasta

    Lactic acid bacteria fermentation and endopeptidase treatment improve the functional and nutritional features of Arthrospira platensis

    Get PDF
    This study aimed at investigating the effect of fermentation and enzymatic treatment on the degree of proteolysis of wet (WB), dried at low temperature (DB), and freeze-dried Spirulina (LB) proteins that affect the nutritional (e.g., amino acid content and profiles, and protein digestibility) and functional (e.g., antioxidant and antimicrobial activities) properties. The desiccation treatments influenced the unprocessed Spirulina characteristics because, compared with that in WB, peptides and free amino acids content was 73% lower in DB and 34% higher in LB. An integrated approach, including chromatographic and electrophoresis analyses, was used to evaluate the effect of the different bioprocessing options on protein profiles, release of peptides and amino acids, and the overall protein digestibility. Compared with the application of fermentation with the selected Lactiplantibacillus plantarum T0A10, the treatment with the endopeptidase Alcalase®, alone or combined, determined the most intense proteolysis. Moreover, the treatment with Alcalase® of LB allowed the release of potentially bioactive compounds that are able to inhibit Penicillium roqueforti growth, whereas the combination of fermentation with L. plantarum T0A10 and Alcalase® treatment increased Spirulina antioxidant properties, as determined by the scavenging activity toward ABTS radical (up to 60%) and antimicrobial activity against food pathogen Escherichia coli

    Extension of the Shelf-Life of Fresh Pasta Using Chickpea Flour Fermented with Selected Lactic Acid Bacteria

    Get PDF
    Fresh pasta is subjected to rapid spoilage, mainly due to the metabolic activity of bacteria, yeasts, and especially molds, which negatively affect the sensorial characteristics and the safety of the product. In this work, chickpea flour was fermented with selected lactic acid bacteria, characterized in terms of the antifungal activity, and used to fortify fresh semolina pasta. Pasta was characterized and subjected to a long period of storage after being artificially inoculated with Penicillium roqueforti. Conventional fresh semolina pasta, produced with or without calcium propionate addition, was used as a reference. The water/salt-soluble extract from chickpea sourdough exhibited antifungal activity towards a large spectrum of molds. Its purification led to the identification of ten potentially active peptides. Besides the high content of dietary fibers (4.37%) and proteins (11.20%), nutritional improvements, such as the decrease of the antinutritional factors concentration and the starch hydrolysis index (25% lower than the control) and the increase of the protein digestibility (36% higher than the control), were achieved in fresh pasta fortified with the chickpea sourdough. Inhibition of the indicator mold growth during a 40-day storage period was more effective than in pasta added to calcium propionate

    Extension of the shelf-life of fresh pasta using chickpea flour fermented with selected lactic acid bacteria

    Get PDF
    Fresh pasta is subjected to rapid spoilage, mainly due to the metabolic activity of bacteria, yeasts, and especially molds, which negatively affect the sensorial characteristics and the safety of the product. In this work, chickpea flour was fermented with selected lactic acid bacteria, characterized in terms of the antifungal activity, and used to fortify fresh semolina pasta. Pasta was characterized and subjected to a long period of storage after being artificially inoculated with Penicillium roqueforti. Conventional fresh semolina pasta, produced with or without calcium propionate addition, was used as a reference. The water/salt-soluble extract from chickpea sourdough exhibited antifungal activity towards a large spectrum of molds. Its purification led to the identification of ten potentially active peptides. Besides the high content of dietary fibers (4.37%) and proteins (11.20%), nutritional improvements, such as the decrease of the antinutritional factors concentration and the starch hydrolysis index (25% lower than the control) and the increase of the protein digestibility (36% higher than the control), were achieved in fresh pasta fortified with the chickpea sourdough. Inhibition of the indicator mold growth during a 40-day storage period was more effective than in pasta added to calcium propionate

    Use of Selected Lactic Acid Bacteria and Quinoa Flour for Manufacturing Novel Yogurt-Like Beverages

    Get PDF
    This study aimed at investigating the suitability of quinoa for making yogurt-like beverages. After the selection of the adequate technological parameters, the fermentation was carried out by using different lactic acid bacteria strains: a probiotic (Lactobacillus rhamnosus SP1), an exopolysaccharides (EPS)-producing (Weissella confusa DSM 20194), and one isolated from quinoa (Lactobacillus plantarum T6B10). During the 20 h of fermentation, W. confusa caused the highest viscosity increase. All the strains had improved concentration of free amino acids and γ-Aminobutyric acid (GABA), polyphenols availability, antioxidant activity (up to 54%), and protein digestibility. The nutritional index (NI) was the highest when L. rhamnosus SP1 was used. The starch hydrolysis index in vitro ranged from 52 to 60. During storage at 4 °C, viscosity and water holding capacity decreased with the exception of the beverage fermented with W. confusa, while all the nutritional characteristics remained stable or slightly increased. Sensory analyses showed that beverages had good textural and organoleptic profiles. Besides the well-known positive properties of the raw matrix, fermentation allowed the obtainment of beverages with different features. Due to the nutritional and functional characteristics conferred to the quinoa beverages, the use of the probiotic and EPS-producing strains showed adequate potential for the industrial application
    • …
    corecore