4 research outputs found

    A test of trophic cascade theory: fish and benthic assemblages across a predator density gradient on coral reefs

    Get PDF
    Removal of predators is often hypothesized to alter community structure through trophic cascades. However, despite recent advances in our understanding of trophic cascades, evidence is often circumstantial on coral reefs because fishing pressure frequently co-varies with other anthropogenic effects, such as fishing for herbivorous fishes and changes in water quality due to pollution. Australia’s outer Great Barrier Reef (GBR) has experienced fishing-induced declines of apex predators and mesopredators, but pollution and targeting of herbivorous fishes are minimal. Here, we quantify fish and benthic assemblages across a fishing-induced predator density gradient on the outer GBR, including apex predators and mesopredators to herbivores and benthic assemblages, to test for evidence of trophic cascades and alternative hypotheses to trophic cascade theory. Using structural equation models, we found no cascading effects from apex predators to lower trophic levels: a loss of apex predators did not lead to higher levels of mesopredators, and this did not suppress mobile herbivores and drive algal proliferation. Likewise, we found no effects of mesopredators on lower trophic levels: a decline of mesopredators was not associated with higher abundances of algae-farming damselfishes and algae-dominated reefs. These findings indicate that top-down forces on coral reefs are weak, at least on the outer GBR. We conclude that predator-mediated trophic cascades are probably the exception rather than the rule in complex ecosystems such as the outer GBR

    Cooperative hunting and gregarious behaviour in the zebra lionfish, Dendrochirus zebra

    No full text
    [Extract] Cooperative hunting is considered one of the most ubiquitous forms of cooperative behaviour in animals, and has been extensively studied in a range of taxa, including birds, mammals, fish and insects (Packer and Ruttan 1988). The zebra lionfish, Dendrochirus zebra (Cuvier 1829), feeds on small crustaceans and fishes and has been previously described as a solitary predator in which individuals hunt exclusively by themselves (Moyer and Zaiser 1981). Here, we report the occurrence of cooperative hunting in D. zebra from coral reefs around Lizard Island, northern Great Barrier Reef, Australia (14°40′S, 145°28′E)

    Observations of marine wildlife tourism effects on a non-focal species

    No full text
    A radio-acoustic positioning system was used to assess the effects of shark cage-diving operators (SCDO) on the fine-scale movements of a non-focal species, the smooth stingray Bathytoshia brevicaudata. The results revealed that the time spent in the array was individually variable, but generally increased when SCDO were present and that the presence of SCDO may have the capacity to elicit changes in the space use of B. brevicaudata. These results indicate that the effects of marine wildlife tourism may extend beyond the focal species of interest

    The power of national acoustic tracking networks to assess the impacts of human activity on marine organisms during the COVID-19 pandemic

    No full text
    COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia’s national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic
    corecore